RRAM Crossbar-Based Fault-Tolerant Binary Neural Networks (BNNs)

More Info
expand_more

Abstract

Computation-In Memory (CIM) using RRAM crossbar array is a promising solution to realize energy-efficient neuromorphic hardware, such as Binary Neural Networks (BNNs). However, RRAM faults restrict the applicability of CIM for BNN implementation. To address this issue, we propose a fault tolerance framework to mitigate the impact of RRAM faults on the accuracy of CIM-based BNN hardware. Evaluation results using MNIST, Fashion-MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms the related works as it restores more than 99% of the RRAM fault induced accuracy reduction with relatively less overhead.