Cyber-Physical Testbed Co-simulation Real-Time
Normal and Abnormal System Frequency Response
Jose Miguel Riquelme-Dominguez (Universidad Politécnica de Madrid, University of Seville)
F. Gonzalez-Longatt (Loughborough University)
André Felipe Silva Melo (University of Seville)
Jose L. Torres (TU Delft - Intelligent Electrical Power Grids)
Peter Palensky (TU Delft - Electrical Sustainable Energy)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Future carbon-neutral power systems impose many challenges; one is the urgent need for a simulation platform that allows replicating the complex systems’ actual dynamic performance. This paper shows the results of implementing a cyber-physical testbed co-simulation in real-time to analyse the system frequency response considering primary frequency control and emergency frequency control: under-frequency load-shedding (UFLS) protection schemes. The proposed testbed uses a physical layer of two real-time simulators from different vendors in a closed loop, Opal-RT OP4510 and Typhoon HIL 604, being the first simulator for test system modelling and the remainder used to implement the UFLS protection scheme. Two connections of the real-time simulators are considered: physical connection using wires to exchange analogue signals and cybernetic digital communication using ANSI C37.118 communication protocol. The cybernetic layer of the testbed models a test system, controls the real-time simulation, and implements digital communication between the simulators. A modified version of the P.M. Anderson 9-bus systems is used for testing purposes, including phasor measurement units (PMUs). Results of the real-time simulation show the appropriate performance of the proposed testbed.