The Distributed Dual Ascent Algorithm is Robust to Asynchrony
Mattia Bianchi (TU Delft - Team Sergio Grammatico)
Wicak Ananduta (TU Delft - Team Sergio Grammatico)
Sergio Grammatico (TU Delft - Team Sergio Grammatico, TU Delft - Team Bart De Schutter)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The distributed dual ascent is an established algorithm to solve strongly convex multi-agent optimization problems with separable cost functions, in the presence of coupling constraints. In this letter, we study its asynchronous counterpart. Specifically, we assume that each agent only relies on the outdated information received from some neighbors. Differently from the existing randomized and dual block-coordinate schemes, we show convergence under heterogeneous delays, communication and update frequencies. Consequently, our asynchronous dual ascent algorithm can be implemented without requiring any coordination between the agents.