A Water-Free In Situ HF Treatment for Ultrabright InP Quantum Dots
Reinout F. Ubbink (TU Delft - ChemE/Opto-electronic Materials)
G.P.F. Gonçalves Pereira Fonseca DeAl (TU Delft - ChemE/Opto-electronic Materials)
Hodayfa Iziyi (Student TU Delft)
I. Du Fosse (TU Delft - ChemE/Opto-electronic Materials)
Ruud Verkleij (Student TU Delft)
S. Ganapathy (TU Delft - RID/TS/Instrumenten groep)
Ernst R H Van Eck (Radboud Universiteit Nijmegen)
Arjan J. Houtepen (TU Delft - ChemE/Opto-electronic Materials)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Indium phosphide quantum dots are the main alternative for toxic and restricted Cd-based quantum dots for lighting and display applications, but in the absence of protecting ZnSe and/or ZnS shells, InP quantum dots suffer from low photoluminescence quantum yields. Traditionally, HF treatments have been used to improve the quantum yield of InP to ~50%, but these treatments are dangerous and not well understood. Here, we develop a postsynthetic treatment that forms HF in situ from benzoyl fluoride, which can be used to strongly increase the quantum yield of InP core-only quantum dots. This treatment is water-free and can be performed safely. Simultaneous addition of the z-type ligand ZnCl2 increases the photoluminescence quantum yield up to 85%. Structural analysis via XPS as well as solid state and solution NMR measurements shows that the in situ generated HF leads to a surface passivation by indium fluoride z-type ligands and removes polyphosphates, but not PO3 and PO4 species from the InP surface. With DFT calculations it is shown that InP QDs can be trap-free even when PO3 and PO4 species are present on the surface. These results show that both polyphosphate removal and z-type passivation are necessary to obtain high quantum yields in InP core-only quantum dots. They further show that core-only InP QDs can achieve photoluminescence quantum yields rivalling those of InP/ZnSe/ZnS core/shell/shell QDs and the best core-only II-VI QDs.