Impact of Lead Time on Aggregate EV Flexibility for Congestion Management Services

Conference Paper (2025)
Author(s)

Nanda Kishor Panda (TU Delft - Intelligent Electrical Power Grids)

Peter Palensky (TU Delft - Electrical Sustainable Energy)

Simon H. Tindemans (TU Delft - Intelligent Electrical Power Grids)

Research Group
Intelligent Electrical Power Grids
DOI related publication
https://doi.org/10.1109/PowerTech59965.2025.11180392
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Intelligent Electrical Power Grids
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository as part of the Taverne amendment. More information about this copyright law amendment can be found at https://www.openaccess.nl. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Increased electrification of energy end-usage can lead to network congestion during periods of high consumption. Flexibility of loads, such as aggregate smart charging of Electric Vehicles (EVs), is increasingly leveraged to manage grid congestion through various market-based mechanisms. Under such an arrangement, this paper quantifies the effect of lead time on the aggregate flexibility of EV fleets. Simulations using realworld charging transactions spanning over different categories of charging stations are performed for two flexibility products (redispatch and capacity limitations) when offered along with different business-as-usual (BAU) schedules. Results show that the variation of tradable flexibility depends mainly on the BAU schedules, the duration of the requested flexibility, and its start time. Further, the implication of these flexibility products on the average energy costs and emissions is also studied for different cases. Simulations show that bidirectional (V2G) charging outperforms unidirectional smart charging in all cases.

Files

PowerTech_2025.pdf
(pdf | 4.73 Mb)
License info not available
License info not available
warning

File under embargo until 13-04-2026