Coherence and nonlinearity in mechanical and josephson superconducting devices

More Info
expand_more

Abstract

In this thesis, the microwave detection of mechanically compliant objects is investigated. This starts with a system of a suspended metal drum capacitively coupled to a high impedance microstrip resonator. The mechanical non-linear dissipation of the drums is studied. Next, a suspended nanowire coupled to a CPW resonator is studied. With an electrostatic drive at twice the mechanical resonance frequency, there occurs a parametric excitation of either the mechanical signal or the coupled microwave resonance frequency of the cavity. Then the microwave loss in flux-tunable resonators is investigated for future experiments. One of the goals of this project was to couple a suspended nanowire with a SQUID loop of a flux tunable cavity. Here, the dielectric loss in flux tunable resonators is studied in order to optimize the design of future devices.