A Supply Pushing Reduction Technique for LC Oscillators Based on Ripple Replication and Cancellation

More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 Y. Chen, Yao-Hong Liu, Z. Zong, Johan Dijkhuis, Guido Dolmans, R.B. Staszewski, M. Babaie
Research Group
Electronics
Issue number
1
Volume number
54
Pages (from-to)
240-252
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In this paper, we propose a method to suppress supply pushing of an LC oscillator such that it may directly operate from a switched-mode dc-dc converter generating fairly large ripples. A ripple replication block (RRB) generates an amplified ripple replica at the gate terminal of the tail current source to stabilize the oscillator's tail current and thus its oscillating amplitude. The parasitic capacitance of the active devices and correspondingly the oscillation frequency are stabilized in turn. A calibration loop is also integrated on-chip to automatically set the optimum replication gain that minimizes the variation of the oscillation amplitude. A 4.9-5.6-GHz oscillator is realized in 40-nm CMOS and occupies 0.23 mm² while consuming 0.8-1.3 mW across the tuning range (TR). The supply pushing is improved to <1 MHz/V resulting in a low <-49-dBc spur due to 0.5-12-MHz sinusoidal supply ripples as large as 50 mVpp. We experimentally verify the effectiveness of the proposed technique also in face of saw-tooth, multi-tone, and modulated supply ripples.

Files

08486740.pdf
(pdf | 5.92 Mb)
License info not available