Recurrent Knowledge Distillation
S. Pintea (TU Delft - Pattern Recognition and Bioinformatics)
Yue Liu (KTH Royal Institute of Technology)
Jan van Van Gemert (TU Delft - Pattern Recognition and Bioinformatics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Knowledge distillation compacts deep networks by letting a small student network learn from a large teacher network. The accuracy of knowledge distillation recently benefited from adding residual layers. We propose to reduce the size of the student network even further by recasting multiple residual layers in the teacher network into a single recurrent student layer. We propose three variants of adding recurrent connections into the student network, and show experimentally on CIFAR-10, Scenes and MiniPlaces, that we can reduce the number of parameters at little loss in accuracy.