Searched for: %2520
(21 - 40 of 53)

Pages

document
Xin, Jianbin (author), Meng, Chuang (author), D'Ariano, Andrea (author), Schulte, F. (author), Peng, Jinzhu (author), Negenborn, R.R. (author)
This paper investigates a novel routing problem of a multi-robot station in a manufacturing cell. In the existing literature, the objective is to minimize the cycle time or energy consumption separately. The routing problem considered in this paper aims to reduce the cycle time and energy consumption jointly for each robot while avoiding...
journal article 2023
document
Coggins, T.N. (author), Steinert, S. (author)
Many researchers from robotics, machine ethics, and adjacent fields seem to assume that norms represent good behavior that social robots should learn to benefit their users and society. We would like to complicate this view and present seven key troubles with norm-compliant robots: (1) norm biases, (2) paternalism (3) tyrannies of the majority, ...
journal article 2023
document
Xin, Jianbin (author), Wu, Xuwen (author), D'Ariano, Andrea (author), Negenborn, R.R. (author), Zhang, Fangfang (author)
Most of the existing path planning methods of automated guided vehicles (AGVs) are static. This paper proposes a new methodology for the path planning of a fleet of AGVs to improve the flexibility, robustness, and scalability of the AGV system. We mathematically describe the transport process as a dynamical system using an ad hoc mixed...
journal article 2023
document
Ding, J. (author), Sels, Mees A.van Loben (author), Angelini, Franco (author), Kober, J. (author), Della Santina, C. (author)
Quadrupeds deployed in real-world scenarios need to be robust to unmodelled dynamic effects. In this work, we aim to increase the robustness of quadrupedal periodic forward jumping (i.e., pronking) by unifying cutting-edge model-based trajectory optimization and iterative learning control. Using a reduced-order soft anchor model, the...
journal article 2023
document
Ferranti, L. (author), Lyons, L. (author), Negenborn, R.R. (author), Keviczky, T. (author), Alonso-Mora, J. (author)
This work presents a method for multi-robot coordination based on a novel distributed nonlinear model predictive control (NMPC) formulation for trajectory optimization and its modified version to mitigate the effects of packet losses and delays in the communication among the robots. Our algorithms consider that each robot is equipped with an...
journal article 2023
document
Pustina, P. (author), Borja, Pablo (author), Della Santina, C. (author), De Luca, Alessandro (author)
Soft robots are intrinsically underactuated mechanical systems that operate under uncertainties and disturbances. In these conditions, this letter proposes two versions of PID-like control laws with a saturated integral action for the particularly challenging shape regulation task. The closed-loop system is asymptotically stabilized and...
journal article 2023
document
Meo, Cristian (author), Franzese, G. (author), Pezzato, C. (author), Spahn, M. (author), Lanillos, Pablo (author)
Adaptation to external and internal changes is of major importance for robotic systems in uncertain environments. Here, we present a novel multisensory active inference (AIF) torque controller for industrial arms that shows how prediction can be used to resolve adaptation. Our controller, inspired by the predictive brain hypothesis, improves...
journal article 2023
document
Knödler, L. (author), Salmi, C. (author), Zhu, H. (author), Ferreira de Brito, B.F. (author), Alonso-Mora, J. (author)
Autonomous mobile robots require accurate human motion predictions to safely and efficiently navigate among pedestrians, whose behavior may adapt to environmental changes. This paper introduces a self-supervised continual learning framework to improve data-driven pedestrian prediction models online across various scenarios continuously. In...
journal article 2022
document
Wenk, Nicolas (author), Jordi, Mirjam V. (author), Buetler, Karin A. (author), Marchal Crespo, L. (author)
Combining immersive virtual reality (VR) using head-mounted displays (HMDs) with assisting robotic devices might be a promising procedure to enhance neurorehabilitation. However, it is still an open question how immersive virtual environments (VE) should be designed when interacting with rehabilitation robots. In conventional training, the...
journal article 2022
document
Stella, F. (author), Obayashi, Nana (author), Della Santina, C. (author), Hughes, Josie (author)
The control possibilities for soft robots have long been hindered by the lack of accurate yet computationally treatable dynamic models of soft structures. Polynomial curvature models propose a solution to this quest for continuum slender structures. Nevertheless, the results produced with this class of models have been so far essentially...
journal article 2022
document
Pustina, P. (author), Della Santina, C. (author), De Luca, Alessandro (author)
The intrinsically underactuated and nonlinear nature of continuum soft robots makes the derivation of provably stable feedback control laws a challenging task. Most of the works so far circumvented the issue either by looking at coarse fully-actuated approximations of the dynamics or by imposing quasi-static assumptions. In this letter, we...
journal article 2022
document
Mészáros, A. (author), Franzese, G. (author), Kober, J. (author)
This work investigates how the intricate task of a continuous pick & place (P&P) motion may be learned from humans based on demonstrations and corrections. Due to the complexity of the task, these demonstrations are often slow and even slightly flawed, particularly at moments when multiple aspects (i.e., end-effector movement,...
journal article 2022
document
Qi, Jiaming (author), Ma, Guangfu (author), Zhu, J. (author), Zhou, Peng (author), Lyu, Yueyong (author), Zhang, Haibo (author), Navarro-Alarcon, David (author)
The robotic manipulation of composite rigid-deformable objects (i.e., those with mixed nonhomogeneous stiffness properties) is a challenging problem with clear practical applications that, despite the recent progress in the field, it has not been sufficiently studied in the literature. To deal with this issue, in this article, we propose a...
journal article 2022
document
Zhu, J. (author), Cherubini, Andrea (author), Dune, Claire (author), Navarro-Alarcon, David (author), Alambeigi, Farshid (author), Berenson, Dmitry (author), Ficuciello, Fanny (author), Harada, Kensuke (author), Kober, J. (author), Yuan, Wenzhen (author)
Deformable object manipulation (DOM) is an emerging research problem in robotics. The ability to manipulate deformable objects endows robots with higher autonomy and promises new applications in the industrial, services, and health-care sectors. However, compared to rigid object manipulation, the manipulation of deformable objects is...
journal article 2022
document
Junge, Kai (author), Obayashi, Nana (author), Stella, F. (author), Della Santina, C. (author), Hughes, Josie (author)
Biology provides many examples of how body adaption can be used to achieve a change in functionality. The feather star, an underwater crinoid that uses feather arms to locomote and feed, is one such system; it releases its arms to distract prey and vary its maneuverability to help escape predators. Using this crinoid as inspiration, we develop a...
journal article 2022
document
Stölzle, Maximilian (author), Miki, Takahiro (author), Gerdes, Levin (author), Azkarate, Martin (author), Hutter, Marco (author)
Accurate and complete terrain maps enhance the awareness of autonomous robots and enable safe and optimal path planning. Rocks and topography often create occlusions and lead to missing elevation information in the Digital Elevation Map (DEM). Currently, these occluded areas are either fully avoided during motion planning or the missing...
journal article 2022
document
Wu, D. (author), Ha, Xuan Thao (author), Zhang, Yao (author), Ourak, Mouloud (author), Borghesan, Gianni (author), Niu, Kenan (author), Trauzettel, F. (author), Dankelman, J. (author), Menciassi, Arianna (author), Poorten, Emmanuel Vander (author)
In cardiovascular interventions, when steering catheters and especially robotic catheters, great care should be paid to prevent applying too large forces on the vessel walls as this could dislodge calcifications, induce scars or even cause perforation. To address this challenge, this paper presents a novel compliant motion control algorithm...
journal article 2022
document
Prendergast, J.M. (author), Balvert, Stephan (author), Driessen, Tom (author), Seth, A. (author), Peternel, L. (author)
In this work, we explore using computational musculoskeletal modeling to equip an industrial collaborative robot with awareness of the internal state of a patient to safely deliver physical therapy. A major concern of robot-mediated physical therapy is that robots may unwittingly injure patients. For patients with shoulder injuries this...
journal article 2021
document
Roy, Spandan (author), Baldi, S. (author), Li, Peng (author), Narayanan, Viswa (author)
Artificial-delay control is a method in which state and input measurements collected at an immediate past time instant (i.e. artificially delayed) are used to compensate the uncertain dynamics affecting the system at the current time. This work formulates an artificial-delay control method with adaptive gains in the presence of nonlinear ...
journal article 2021
document
Derner, Erik (author), Kubalik, Jiri (author), Babuska, R. (author)
Continual model learning for nonlinear dynamic systems, such as autonomous robots, presents several challenges. First, it tends to be computationally expensive as the amount of data collected by the robot quickly grows in time. Second, the model accuracy is impaired when data from repetitive motions prevail in the training set and outweigh...
journal article 2021
Searched for: %2520
(21 - 40 of 53)

Pages