Searched for: author%3A%22Charbon-Iwasaki-Charbon%2C+E.%22
(1 - 20 of 44)

Pages

document
Gong, J. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit operation. By considering the benefits and challenges of cryogenic operation, a dedicated...
journal article 2023
document
Alarcon, Eduard (author), Abadal, Sergi (author), Sebastiano, F. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Bolivar, Peter Haring (author), Palesi, Maurizio (author), Staszewski, R.B. (author), Almudever, Carmen G. (author)
The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcores) interconnected via quantum-coherent qubit state transfer links and orchestrated via...
conference paper 2023
document
Kiene, G. (author), Overwater, R.W.J. (author), Catania, Alessandro (author), Gunaputi Sreenivasulu, A.M. (author), Bruschi, Paolo (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author), Sebastiano, F. (author)
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qubit reflectometry readout for quantum computing. To optimize the...
journal article 2023
document
Xue, X. (author), 't Hart, P.A. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Vladimirescu, A. (author)
As big strides were being made in many science fields in the 1970s and 80s, faster computation for solving problems in molecular biology, semiconductor technology, aeronautics, particle physics, etc., was at the forefront of research. Parallel and super-computers were introduced, which enabled problems of a higher level of complexity to be...
journal article 2023
document
Bruschini, Claudio (author), Burri, Samuel (author), Bernasconi, Ermanno (author), Milanese, Tommaso (author), Ulku, Arin C. (author), Homulle, Harald (author), Charbon-Iwasaki-Charbon, E. (author)
The LinoSPAD2 camera combines a 512×1 linear single-photon avalanche diode (SPAD) array with an FPGA-based photon-counting and time-stamping platform, to create a reconfigurable sensing system capable of detecting single photons. The read-out is fully parallel, where each SPAD is connected to a different FPGA input. The hardware can be...
conference paper 2023
document
Gong, J. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
This article presents a low-jitter and low-spur charge-sampling phase-locked loop (CSPLL). A charge-domain sub-sampling phase detector is introduced to achieve a high phase-detection gain and to reduce the PLL in-band phase noise. Even without employing any power-hungry isolation buffers, the proposed phase detector dramatically suppresses...
journal article 2022
document
Gong, J. (author), Chen, Y. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
This article presents a 4-to-5GHz LC oscillator operating at 4.2K for quantum computing applications. The phase noise (PN) specification of the oscillator is derived based on the control fidelity for a single-qubit operation. To reveal the substantial gap between the theoretical predictions and measurement results at cryogenic temperatures, a...
journal article 2022
document
Pellerano, Stefano (author), Subramanian, Sushil (author), Park, Jong-Seok (author), Patra, Bishnu (author), Xue, X. (author), Vandersypen, L.M.K. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author)
Quantum computers have been heralded as a novel paradigm for the solution of today's intractable problems, whereas the core principles of quantum computation are superposition, entanglement and interference, three fundamental properties of quantum mechanics [1]. A quantum computer generally comprises a quantum processor, made of an array of...
conference paper 2022
document
Prabowo, B. (author), Zheng, G. (author), Mehrpoo, M. (author), Patra, B (author), Harvey-Collard, P. (author), Dijkema, J.J. (author), Sammak, Amir (author), Scappucci, G. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Vandersypen, L.M.K. (author), Babaie, M. (author)
Quantum computers (QC) promise to solve certain computational problems exponentially faster than a classical computer due to the superposition and entanglement properties of quantum bits (qubits). Among several qubit technologies, spin qubits are a promising candidate for large-scale QC, since (1) they have a small footprint allowing them to...
conference paper 2021
document
Xue, X. (author), Patra, B (author), van Dijk, J.P.G. (author), Samkharadze, Nodar (author), Corna, A. (author), Paquelet Wuetz, B. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Sebastiano, F. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Vandersypen, L.M.K. (author)
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications<sup>1</sup>. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the...
journal article 2021
document
Houwink, Quint (author), Kalisvaart, D. (author), Hung, S. (author), Cnossen, J.P. (author), Fan, D. (author), Mos, Paul (author), Ülkü, Arin Can (author), Bruschini, Claudio (author), Charbon-Iwasaki-Charbon, E. (author), Smith, C.S. (author)
Single-photon avalanche diode (SPAD) arrays can be used for single-molecule localization microscopy (SMLM) because of their high frame rate and lack of readout noise. SPAD arrays have a binary frame output, which means photon arrivals should be described as a binomial process rather than a Poissonian process. Consequentially, the theoretical...
journal article 2021
document
Ren, Wuwei (author), Jiang, Jingjing (author), Di Costanzo Mata, Aldo (author), Kalyanov, Alexander (author), Ripoll, Jorge (author), Lindner, S.A. (author), Charbon-Iwasaki-Charbon, E. (author), Zhang, C. (author), Rudin, Markus (author), Wolf, Martin (author)
Fluorescence molecular tomography (FMT) emerges as a powerful non-invasive imaging tool with the ability to resolve fluorescence signals from sources located deep in living tissues. Yet, the accuracy of FMT reconstruction depends on the deviation of the assumed optical properties from the actual values. In this work, we improved the accuracy...
journal article 2020
document
van Dijk, J.P.G. (author), Patra, B (author), Pellerano, Stefano (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
The design of a large-scale quantum computer requires co-optimization of both the quantum bits (qubits) and their control electronics. This work presents the first systematic design of such a controller to simultaneously and accurately manipulate the states of multiple spin qubits or transmons. By employing both analytical and simulation...
journal article 2020
document
Sebastiano, F. (author), van Dijk, J.P.G. (author), Thart, P. A. (author), Patra, B (author), van Staveren, J. (author), Xue, X. (author), Almudever, Carmen G. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Vladimirescu, A. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author)
Cryogenic CMOS (cryo-CMOS) is a viable technology for the control interface of the large-scale quantum computers able to address non-trivial problems. In this paper, we demonstrate state-of-the-art cryo-CMOS circuits and systems for such application and we discuss the challenges still to be faced on the path towards practical quantum...
conference paper 2020
document
Ruffino, A. (author), Peng, Yatao (author), Sebastiano, F. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author)
Quantum computers require classical electronics to ensure fault-tolerant operation. To address compactness and scalability, it was proposed to implement such electronics as integrated circuits operating at cryogenic temperatures close to those at which quantum bits (qubits) operate. Circulators are among the most common blocks used in the...
journal article 2020
document
Patra, B (author), Mehrpoo, M. (author), Ruffino, A. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author)
This paper presents the characterization and modeling of microwave passive components in TSMC 40-nm bulk CMOS, including metal-oxide-metal (MoM) capacitors, transformers, and resonators, at deep cryogenic temperatures (4.2 K). To extract the parameters of the passive components, the pad parasitics were de-embedded from the test structures using...
journal article 2020
document
Patra, B (author), van Dijk, J.P.G. (author), Corna, A. (author), Xue, X. (author), Samkharadze, Nodar (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Babaie, M. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
Quantum computers (QC), comprising qubits and a classical controller, can provide exponential speed-up in solving certain problems. Among solid-state qubits, transmons and spin-qubits are the most promising, operating « 1K. A qubit can be implemented in a physical system with two distinct energy levels representing the |0) and |1) states, e.g...
conference paper 2020
document
Gong, J. (author), Chen, Yue (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author)
Low-power, low phase noise (PN) cryogenic frequency generation is required for the control electronics of quantum computers. To avoid limiting the performance of quantum bits, the frequency noise of a PLL should be &lt; 1.9 kHz rms [1]. However, it is challenging for RF oscillators, as the heart of frequency synthesizers to satisfy such a...
conference paper 2020
document
't Hart, P.A. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Vladimirescu, A. (author), Sebastiano, F. (author)
This paper presents a device matching study of a commercial 40-nm bulk CMOS technology operated at cryogenic temperatures. Transistor pairs and linear arrays, optimized for device matching, were characterized over the temperature range from 300 K down to 4.2 K. The device parameters relevant for mismatch, i.e., the threshold voltage and the...
journal article 2020
document
Schriek, E. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
We present a digital cell library optimized for 4.2 K to create controllers that keep quantum processors coherent and entangled. The library, implemented on a standard 40-nm CMOS technology, was employed in the creation of the first 4.2 K RISC-V processor. It has achieved a minimum supply voltage of 590 mV, energy-delay product of 37 fJ/MHz,...
journal article 2020
Searched for: author%3A%22Charbon-Iwasaki-Charbon%2C+E.%22
(1 - 20 of 44)

Pages