Searched for: collection%253Air
(21 - 40 of 148)

Pages

document
Wapenaar, C.P.A. (author), Snieder, Roel (author), de Ridder, Sjoerd (author), Slob, E.C. (author)
Marchenko methods are based on integral representations which express Green’s functions for virtual sources and/or receivers in the subsurface in terms of the reflection response at the surface. An underlying assumption is that inside the medium the wave field can be decomposed into downgoing and upgoing waves and that evanescent waves can be...
journal article 2021
document
van IJsseldijk, J.E. (author), Wapenaar, C.P.A. (author)
The Marchenko method retrieves the responses to virtual sources in the Earth's subsurface from reflection data at the surface, accounting for all orders of multiple reflections. The method is based on two integral representations for focusing- A nd Green's functions. In discretized form, these integrals are represented by finite summations...
journal article 2021
document
Thorbecke, J.W. (author), Zhang, L. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
The Marchenko multiple elimination (MME) and transmission compensation schemes retrieve primary reflections in the two-way traveltime domain without model information or using adaptive subtraction. Both schemes are derived from projected Marchenko equations and are similar to each other, but they use different time-domain truncation operators...
journal article 2021
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Dukalski, Marcin (author), Meles, G.A. (author), Slob, E.C. (author), Staring, M. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Zhang, L. (author), Reinicke Urruticoechea, C. (author)
With the Marchenko method it is possible to retrieve Green's functions between virtual sources in the subsurface and receivers at the surface from reflection data at the surface and focusing functions. A macro model of the subsurface is needed to estimate the first arrival; the internal multiples are retrieved entirely from the reflection data....
journal article 2021
document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
We create virtual sources and receivers in a 3-D subsurface using the previously derived single-sided homogeneous Green's function representation. We employ Green's functions and focusing functions that are obtained using reflection data at the Earth's surface, a macrovelocity model, and the Marchenko method. The homogeneous Green's function is...
journal article 2021
document
Wapenaar, C.P.A. (author), Ridder, Sjoerd de (author)
The propagator matrix “propagates” a full wave field from one depth level to another, accounting for all propagation angles and evanescent waves. The Marchenko focusing function forms the nucleus of data-driven Marchenko redatuming and imaging schemes, accounting for internal multiples. These seemingly different concepts appear to be closely...
journal article 2021
document
Wapenaar, C.P.A. (author), van IJsseldijk, J.E. (author)
Marchenko imaging is based on integral representations for focusing functions and Green’s functions. In practice, the integrals are replaced by finite summations. This works well for regularly sampled data, but the quality of the results degrades in a case of imperfect sampling. We have developed discrete representations that account for...
journal article 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples. Multiples can corrupt seismic images, producing both false positives, that is by focusing energy at unphysical interfaces, and false negatives, that is by destructively interfering with primaries. Multiple prediction...
journal article 2020
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Treitel, Sven (author)
Acoustic inversion in one-dimension gives impedance as a function of travel time.<br/>Inverting the reflection response is a linear problem. Recursive methods, from top to bottom or vice versa, are known and use a fundamental wave field that is computed from the reflection response. An integral over the solution to the Marchenko equation, on the...
journal article 2020
document
Reinicke Urruticoechea, C. (author), Dukalski, M.S. (author), Wapenaar, C.P.A. (author)
The reflection response of strongly scattering media often contains complicated interferences between primaries and (internal) multiples, which can lead to imaging artifacts unless handled correctly. Internal multiples can be kinematically predicted, for example by the Jakubowicz method or by the inverse scattering series (ISS), as long as...
journal article 2020
document
Minato, S. (author), Wapenaar, C.P.A. (author), Ghose, R. (author)
To quantitatively image fractures with high resolution, we have developed an elastic least-squares migration (LSM) algorithm coupled with linear-slip theory, which accurately addresses seismic wave interaction with thin structures. We derive a linearized waveform inversion using the Born approximation to the boundary integral equation for...
journal article 2020
document
Staring, M. (author), Wapenaar, C.P.A. (author)
In recent years, a variety of Marchenko methods for the attenuation of internal multiples has been developed. These methods have been extensively tested on two-dimensional synthetic data and applied to two-dimensional field data, but only little is known about their behaviour on three-dimensional synthetic data and three-dimensional field...
journal article 2020
document
Wapenaar, C.P.A. (author)
With the Marchenko method, it is possible to retrieve the wave field inside a medium from its reflection response at the surface. To date, this method has predominantly been applied to naturally occurring materials. This study extends the Marchenko method for applications in layered metamaterials with, in the low-frequency limit, effective...
journal article 2020
document
Wapenaar, C.P.A. (author)
We consider wave propagation problems in which there is a preferred direction of propagation. To account for propagation in preferred directions, the wave equation is decomposed into a set of coupled equations for waves that propagate in opposite directions along the preferred axis. This decomposition is not unique. We discuss flux-normalised...
journal article 2020
document
Wapenaar, C.P.A. (author)
With the Marchenko method, Green’s functions in the subsurface can be retrieved from seismic reflection data at the surface. State-of-the-art Marchenko methods work well for propagating waves but break down for evanescent waves. This paper discusses a first step towards extending the Marchenko method for evanescent waves and analyses its...
journal article 2020
document
Wapenaar, C.P.A. (author), Reinicke Urruticoechea, C. (author)
Given the increasing interest for non-reciprocal materials, we propose a novel acoustic imaging method for layered non-reciprocal media. The method we propose is a modification of the Marchenko imaging method, which handles multiple scattering between the layer interfaces in a data-driven way. We start by reviewing the basic equations for wave...
journal article 2019
document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
We aim to monitor and characterize signals in the subsurface by combining these passive signals with recorded reflection data at the surface of the Earth. To achieve this, we propose a method to create virtual receivers from reflection data using the Marchenko method. By applying homogeneous Green's function retrieval, these virtual receivers...
journal article 2019
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author)
The earthquake seismology and seismic exploration communities have developed a variety of seismic imaging methods for passive- and active-source data. Despite the seemingly different approaches and underlying principles, many of those methods are based in some way or another on Green's theorem. The aim of this paper is to discuss a variety of...
journal article 2019
document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
To enhance monitoring of the subsurface, virtual sources and receivers inside the subsurface can be created from seismic reflection data at the surface of the Earth using the Marchenko method. The response between these virtual sources and receivers can be obtained through the use of homogeneous Green's function retrieval. A homogeneous Green's...
journal article 2019
document
Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
We have developed a scheme that retrieves primary reflections in the two-way traveltime domain by filtering the data. The data have their own filter that removes internal multiple reflections, whereas the amplitudes of the retrieved primary reflections are compensated for two-way transmission losses. Application of the filter does not require...
journal article 2019
Searched for: collection%253Air
(21 - 40 of 148)

Pages