Authored

20 records found

An array of temperature sensors based on the thermal diffusivity (TD) of bulk silicon has been realized in a standard 40-nm CMOS process. In each TD sensor, a highly digital voltage-controlled oscillator-based Σ Δ ADC digitizes the temperature-dependent phase shift of an electrot ...
VCO-based phase-domain ΣΔ modulators employ the combination of a voltage-controlled-oscillator (VCO) and an up/down counter to replace the analog loop filter used in conventional ΣΔ modulators. Thanks to this highly digital architecture, they can be quite compact, and are expecte ...
Today’s systems-on-chip (SOCs) and microprocessors are complex systems that require multiple temperature sensors to monitor temperature variations in multiple spots on a single silicon die. For such thermal management applications, specialized compact and fast temperature sensors ...
Due to their relatively stable phase shift over temperature, electrothermal filters (ETFs) with an oxide heat path have been used as on-chip phase references, e.g. for thermal diffusivity (TD) temperature sensors. However, previous oxide ETFs were limited to SOI processes, whose ...
Due to their relatively stable phase shift over temperature, electrothermal filters (ETFs) with an oxide heat path have been used as on-chip phase references, e.g. for thermal diffusivity (TD) temperature sensors. However, previous oxide ETFs were limited to SOI processes, whose ...
Due to their relatively stable phase shift over temperature, electrothermal filters (ETFs) with an oxide heat path have been used as on-chip phase references, e.g. for thermal diffusivity (TD) temperature sensors. However, previous oxide ETFs were limited to SOI processes, whose ...
This work presents a thermal diffusivity (TD) sensor realized in nanometer (40nm) CMOS that demonstrates that the performance of such sensors continues to improve with scaling. Without trimming, the sensor achieves ±1.4°C (3σ) inaccuracy from -40 to 125°C, which is a 5× improveme ...
This work presents a thermal diffusivity (TD) sensor realized in nanometer (40nm) CMOS that demonstrates that the performance of such sensors continues to improve with scaling. Without trimming, the sensor achieves ±1.4°C (3σ) inaccuracy from -40 to 125°C, which is a 5× improveme ...
This work presents a thermal diffusivity (TD) sensor realized in nanometer (40nm) CMOS that demonstrates that the performance of such sensors continues to improve with scaling. Without trimming, the sensor achieves ±1.4°C (3σ) inaccuracy from -40 to 125°C, which is a 5× improveme ...