SC

S. Chaves Figueiredo

27 records found

Authored

Extrusion based additive manufacturing of cementitious materials has demonstrated strong potential to become widely used in the construction industry. However, the use of this technique in practice is conditioned by a feasible solution to implement reinforcement in such automa ...

In 3D concrete printing (3DCP), it is necessary to meet contradicting rheological requirements: high fluidity during pumping and extrusion, and high stability and viscosity at rest to build the layered structure. In this paper, the impact of the hydroxypropyl methylcellulose (HPM ...

Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing

A Fundamental Study of Extrudability and Early-Age Strength Development

The goal of this study is to investigate the effects of different grades of calcined clay on the extrudability and early-age strength development under ambient conditions. Four mix designs were proposed. Three of them contained high, medium, and low grades of calcined clay, respe ...

New additive manufacturing methods for cementitious materials hold a high potential to increase automation in the construction industry. However, these methods require new materials to be developed that meet performance requirements related to specific characteristics of the m ...

Recent years have seen a rapid growth of additive manufacturing methods for concrete construction. Potential advantages include reduced material use and cost, reduced labor, mass customization and CO2 footprint reduction. None of these methods, however, has yet been able to ...

Significant attention has been given to the development of new materials and techniques to be employed in the construction market. One of the techniques which has drawn noticeable attention is the additive manufacturing process (a.k.a. 3-dimensional printing (3D printing)). One o ...
The potential of using phase change materials (PCM) in cementitious materials to mitigate damage due to thermal loadings has been recently focus of intensive research. In the case of PCM with transition temperatures near to the freezing point of water, their potential to delay f ...
Soft inclusions, such as capsules and other particulate admixtures are increasingly being used in cementitious materials for functional purposes (i.e. self-healing and self-sensing of concrete). Yet, their influence on the fracture behaviour of the material is sometimes overlooke ...
To investigate the effects of viscosity-modifying admixture (VMA) on the extrudability of limestone and calcined clay-based cementitious materials, three mix designs with different dosages of VMA were proposed in this study. The ram extrusion was utilized as an extrusion model fo ...
Recently the concept of crack self-sealing has been investigated as a method to prevent degradation and/or loss of functionality of cracked concrete elements. To obtain self-sealing effect in the crack, water swelling admixtures such as superabsorbent polymers (SAP) are added int ...

A method is presented to model deformation and fracture behavior of 3D printed disordered lattice materials under uniaxial tensile load. A lattice model was used to predict crack pattern and load-displacement response of the printed lattice materials. To include the influence ...

In this work, a numerical model is presented to predict the self-sealing effect provided by superabsorbent polymers (SAP) admixtures in mortar. Firstly, the use of a law of absorption kinetics for SAP embedded in a cementitious matrix was validated with experimental results avail ...

Durability of fibre reinforced cementitious composites

Coupling mechanical and chloride environment loads

Fibre reinforced cementitious composites (FRCC) may be characterized by their improved performance namely in terms of tensile ductility, accompanied by multiple cracking, and potentially lower permeability to liquid and gas in cracked state. Cracking, which is nearly inevitable, ...
The use of fibres to enhance the ductility of cementitious composites has been extensively studied for the past few years. The addition of polymeric or metalic fibres with random orientation to the composite or even natural long and aligned fibres demonstrated a very successful r ...
The ability of Superabsorbent Polymers (SAP) to block water flow along cracks in cement-based materials has become an attractive feature of these admixtures. The diminution of fl w rates in such composites are attributed to the capacity of the SAPs to absorb water and swell in th ...
In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cementitious co ...

This paper presents a validation procedure of multi-scale modelling scheme by making, testing and modelling deformation and fracture of cement paste beam at sub-meso scale (between micro and meso scale). Miniaturized three-point bending testing concepts were adopted. Cement pa ...

Abstract In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cement ...
Cracking in concrete structures compromises the durability and functionality of the structures themselves. Different kinds of self-healing concretes, less or more sophisticated, have been developed in the past ten years to overcome early cracks in structures. An experimental stud ...
This work aims to provide a method for numerically and experimentally investigating the fracture mechanism of cement paste at the microscale. For this purpose, a new procedure was proposed to prepare micro cement paste cubes (100 × 100 × 100 µm3) and beams with a square cross sec ...