Circular Image

B. Šavija

222 records found

When serving in the marine environment, reinforced concrete structures are prone to be attacked by chloride ingress, which generally co-occurs with varying humidity and temperature changes. Therefore, considering the interaction between moisture transport and heat transfer, and t ...

Reinforcing mechanism of lattice-reinforced cementitious composites

Insights into flexural performance and material interactions

Lattice reinforcement (LR) demonstrates great potential in enhancing cementitious matrices due to its ability to be strategically designed and additively manufactured to optimize composite properties. To fully exploit the synergy between LR and cementitious matrix, a deep underst ...
The microstructure of cement paste determines the overall performance of concrete and therefore obtaining the microstructure is an essential step in concrete studies. Traditional methods to obtain the microstructure, such as scanning electron microscopy (SEM) and X-ray computed t ...
Circulating fluidized bed fly ash (CFBFA) is a by-product from the combustion in circulating fluidized bed boiler in power plants. Herein, to resourcefully utilize CFBFA and reduce cement consumption, the CFBFA was ground (GCFBFA) and used to prepare low-carbon lightweight foamed ...
The use of 3D printed polymers in the form of lattice reinforcement can enhance the mechanical properties of cementitious composites. Methods like Fused Deposition Modelling (FDM) 3D printing enable their creation, but this process has a large (negative) effect on their mechanica ...

Filament stitching

An architected printing strategy to mitigate anisotropy in 3D-Printed engineered cementitious composites (ECC)

Anisotropy in 3D-printed concrete structures has persistently raised concerns regarding structural integrity and safety. In this study, an architected 3D printing strategy, “stitching”, was proposed to mitigate anisotropy in 3D-printed Engineered Cementitious Composites (ECC). Th ...
3D printing is becoming increasingly popular in the construction sector. 3D printing offers the potential to reduce costs, construction time and construction waste. However, due to its high cement content, 3D printable concrete more expensive to produce. The article includes a br ...
Auxetic cementitious cellular composites (ACCCs) exhibit hinge-type recoverable deformation during auxetic behavior phase, a rare pseudo-elastic property in cementitious materials. However, their low load-bearing capacity during this phase restricts their use in high-load applica ...
Portland cement paste has a highly heterogenous evolving microstructure that complicates the development of stronger and greener cementitious materials. Microstructure is the fundamental input of multiscale studies on material behaviors. Herein, we propose a conditional generativ ...
This paper aims to improve the activity of high-calcium fly ash (FA) by using a wet carbonation treatment process. The results indicated that carbonation products, i.e. calcite, were attached to the surface of FA, which accelerated cement hydration primarily at the early stage. S ...
Herein, a three-dimensional numerical model based on computational fluid dynamics (CFD) for fresh concrete is developed to predict the slump and slump flow. Fresh concrete is considered as a non-Newtonian fluid, and its rheological behaviour is characterised by the Bingham and He ...
Cement-based materials (CBMs) are multiscale composites whose macroscopic properties largely depend on their micro/nanoscale features. Micro and nanomechanical properties of CBMs are typically characterized using local techniques such as nanoindentation. Compared with nanoindenta ...
Auxetic cementitious cellular composites (ACCCs) possess advantageous mechanical properties in static tests, such as high fracture resistance and efficient energy dissipation. However, little attention has been given to understanding the impact resistance of ACCCs. In this study, ...
This study develops a novel class of 3D-printed auxetic lattice reinforced foamed cementitious composites, aimed at overcoming the brittleness and low strength of conventional foamed cement while maintaining lightweight characteristic. Polymeric auxetic lattices (mechanical metam ...
This paper aims at enhancing tensile properties of strain-hardening alkali-activated composite (SHAAC) by using a flow-induced casting approach. Ca(OH)2-activated ground granulated blast-furnace slag (GGBS) was used as binder material and viscosity modifying admixture ...

A comprehensive review of fatigue of cementitious materials

Characterisation, modelling and mechanisms

This review provides a comprehensive analysis of the fatigue behaviour of cementitious materials, focusing on the characterisation, modelling, and mechanisms underlying their fatigue properties. It begins with a detailed exploration of how material composition and loading conditi ...
Crystalline admixture (CA) is an effective self-healing agent for mortar. However, the effects of crack parameters (i.e. crack width and cracking age) and the service environment on the self-healing behavior of CA-containing mortar are not well understood. Herein, the self-healin ...
A compounded system of fly ash (FA) and carbide slag (CS) was proposed for CO2 mineralization using the aqueous approach to prepare supplementary cementitious material. Influence of CS dosage on the morphology, particle size distribution, and chemical phases of the car ...
Temperature Stress Testing Machine (TSTM) is a universal testing tool for many properties relevant to early-age cracking of cementitious materials. However, the complexity of TSTMs require heavy lab work and thus hinders a more thorough parametric study on a range of cementitious ...
Self-healing concrete using encapsulated healing agent has shown great potential in enhancing concrete durability. However, the capsules are expensive to make and can lower the mechanical properties of concrete. In this study, a new type of manufactured aggregate that employs was ...