JX

J. Xie

10 records found

Auxetic cementitious cellular composites (ACCCs) exhibit hinge-type recoverable deformation during auxetic behavior phase, a rare pseudo-elastic property in cementitious materials. However, their low load-bearing capacity during this phase restricts their use in high-load applica ...

Filament stitching

An architected printing strategy to mitigate anisotropy in 3D-Printed engineered cementitious composites (ECC)

Anisotropy in 3D-printed concrete structures has persistently raised concerns regarding structural integrity and safety. In this study, an architected 3D printing strategy, “stitching”, was proposed to mitigate anisotropy in 3D-printed Engineered Cementitious Composites (ECC). Th ...
Cementitious materials can achieve desirable strength development and reduced cracking potential under moist or immersed conditions. However, in this work, we found that alkali-activated slag (AAS) pastes can crack underwater, with a higher silicate modulus showing more pronounce ...
Auxetic cementitious cellular composites (ACCCs) possess advantageous mechanical properties in static tests, such as high fracture resistance and efficient energy dissipation. However, little attention has been given to understanding the impact resistance of ACCCs. In this study, ...
Polyvinyl alcohol fiber reinforced engineered cementitious composite (ECC) using piezoelectric polymer film has attracted significant interest due to its energy harvesting potential. This work provides a theoretical model for evaluating the energy harvesting of bendable ECC using ...
This study investigates the mechanical properties of cementitious composites with 3D-printed auxetic lattices, featuring negative Poisson's ratios (auxetic behavior) in multiple directions. These lattices were fabricated using vat photopolymerization 3D printing, and three base m ...
Early-age cracking risk induced by autogenous deformation is high for cementitious materials of low water-binder ratios. The autogenous deformation, viscoelastic properties, and stress evolution are three important factors for understanding and quantifying the early-age cracking ...
Auxetic cementitious cellular composites (ACCCs) exhibit desirable mechanical properties (e.g., high fracture resistance and energy dissipation), due to their unique deformation characteristics. In this study, a new type of cementitious auxetic material, referred to as peanut sha ...
Direct ink writing of cementitious materials can be an alternative way for creating vascular self-healing concrete by intentionally incorporating hollow channels in the cementitious matrix. In this study, a 3D-printable fibre reinforced mortar was first developed. Three groups of ...
The high deformation capacity of auxetic cementitious cellular composites (ACCCs) makes them promising for strain-based energy harvesting applications in infrastructure. In this study, a novel piezoelectric energy harvester (PEH) with ACCCs and surface-mounted PVDF film based on ...