ZW

Authored

19 records found

Tailoring lattice structures is a commonly used method to develop lattice materials with desired mechanical properties. However, for cementitious lattice materials, besides the macroscopic lattice structure, the multi-phase microstructure of cement paste may have substantial impa ...

Early age hydration of model slag cement

Interaction among C<sub>3</sub>S, gypsum and slag with different Al<sub>2</sub>O<sub>3</sub> contents

A deeper insight into SO3/Al2O3 ratio including the contribution of alumina in slag at early age is required to ensure a properly sulfated slag cement. In this paper, to investigate the effect of gypsum and alumina of slag, emphasis was laid on the hydration characteristics of C3 ...

On the use of machine learning models for prediction of compressive strength of concrete

Influence of dimensionality reduction on the model performance

Compressive strength is the most significant metric to evaluate the mechanical properties of concrete. Machine learning (ML) methods have shown promising results for predicting compres-sive strength of concrete. However, at present, no in-depth studies have been devoted to the in ...
Cracking is one of the main causes for deterioration of concrete structures. Self-healing concrete with 3D-printed vascular networks has excellent potential for autonomous self-healing. This approach is scarcely investigated: no studies have been devoted to the influence of print ...

Early-age creep of 3D printable mortar

Experiments and analytical modelling

In this study, an experimental setup to characterize the early-age creep of 3D printable mortar was proposed. The testing protocol comprises quasi-static compressive loading-unloading cycles, with 180-s holding periods in between. An analytical model based on a double power law w ...
This paper presents a state-of-the-art review on the application of additive manufacturing (AM) in self-healing cementitious materials. AM has been utilized in self-healing cementitious materials in three ways: (1) concrete with 3D-printed capsules/vasculatures; (2) 3D concrete p ...
Additively manufactured vascular networks have great potential for use in autonomous self-healing of cementitious composites as they potentially allow multiple healing events to take place. However, the existence of a vascular tube wall may impede with the healing efficiency if i ...
This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build a database that contains 18,920 samples. Then, 3 DCNNs wi ...
This study aims to provide an efficient and accurate machine learning (ML) approach for predicting the creep behavior of concrete. Three ensemble machine learning (EML) models are selected in this study: Random Forest (RF), Extreme Gradient Boosting Machine (XGBoost) and Light Gr ...
This paper aims to investigate the influences of high Portland cement substitutions (>60 wt%) by low-grade calcined clay (CC) and limestone (LF) on 3D concrete printability, stiffness evolution and early-age hydration. Results show that, with the same dosage of admixtures (superp ...
Extrusion-based 3D concrete printing (3DCP) results in deposited materials with complex microstructures that have high porosity and distinct anisotropy. Due to the material heterogeneity and rapid growth of cracks, fracture analysis in these air-void structures is often complex, ...
Direct ink writing of cementitious materials can be an alternative way for creating vascular self-healing concrete by intentionally incorporating hollow channels in the cementitious matrix. In this study, a 3D-printable fibre reinforced mortar was first developed. Three groups of ...
The high deformation capacity of auxetic cementitious cellular composites (ACCCs) makes them promising for strain-based energy harvesting applications in infrastructure. In this study, a novel piezoelectric energy harvester (PEH) with ACCCs and surface-mounted PVDF film based on ...
Auxetic cementitious cellular composites (ACCCs) exhibit desirable mechanical properties (e.g., high fracture resistance and energy dissipation), due to their unique deformation characteristics. In this study, a new type of cementitious auxetic material, referred to as peanut sha ...
In this paper, optimization of vascular structure of self-healing concrete is performed with deep neural network (DNN). An input representation method is proposed to effectively represent the concrete beams with 6 round pores in the middle span as well as benefit the optimization ...
Self-healing concrete has great potential to enhance the durability of concrete structures without significantly increasing the initial costs. Among the self-healing approaches, vascular self-healing cementitious composite is capable of supplying healing agents to the cracked reg ...
The current study investigates short-term and long-term crack-healing behaviour of mortars embedded with bacteria-based poly-lactic acid (PLA) capsules under both ideal and realistic environmental conditions. Two sets of specimens were prepared and subjected to different healing ...
Vascular self-healing concrete (SHC) has great potential to mitigate the environmental impact of the construction industry by increasing the durability of structures. Designing concrete with high initial mechanical properties by searching a specific arrangement of vascular struct ...
Compared with other self-healing mechanisms, embedding vascular networks in cementitious matrix enables repairing wider cracks and performing multiple healing cycles. For vascular-based self-healing cementitious composites, additive manufacturing (AM) allows fabricating vascular ...