JN

Jörg Neugebauer

28 records found

Authored

Anharmonicity in bcc refractory elements

A detailed ab initio analysis

Explicit anharmonicity, defined as the vibrational contribution beyond the quasiharmonic approximation, is qualitatively different between the group V and group VI bcc refractory elements. Group V elements show a small and mostly negative anharmonic entropy, whereas group VI e ...

The microstructure of advanced high-strength steels often shows a sensitive dependence on alloying. For example, adding Cr to improve the corrosion resistance of medium-Mn steels also enhances the precipitation of carbides. The current study focuses on the behavior of H in suc ...

Beyond Solid Solution High-Entropy Alloys

Tailoring Magnetic Properties via Spinodal Decomposition

Since its first emergence in 2004, the high-entropy alloy (HEA) concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, this strategy is changed and renders such massive solid solutions metastable, to trigger spin ...

The interface method is a well established approach for predicting melting points of materials using interatomic potentials. However, applying the interface method is tedious and involves significant human intervention. The whole procedure involves several successive tasks: es ...

We apply the efficient two-optimized references thermodynamic integration using Langevin dynamics method [Phys. Rev. B 96, 224202 (2017)2469-995010.1103/PhysRevB.96.224202] to calculate highly accurate melting properties of Al and magnetic Ni from first principles. For Ni we care ...

Phonons in magnetically disordered materials

Magnetic versus phononic time scales

The lattice dynamics in magnetic materials, such as Fe depends on the degree of disorder of the atomic magnetic moments and the time scale of spin fluctuations. Using first-principles methods, we have studied this effect by determining the force constant matrix in two limits: ...

Local lattice distortions in a series of body-centered cubic alloys, including refractory high-entropy alloys, are investigated by means of atomic volumes, atomic charges, and atomic stresses defined by the Bader charge analysis based on first-principles calculations. Analyzing t ...

We reveal the impact of magnetic ordering on stacking fault energy (SFE) and its influence on the deformation mechanisms and mechanical properties in a class of nonequiatomic quinary Mn-containing compositional complex alloys or high entropy alloys (HEAs). By combining ab init ...

Concentrated solid solutions including the class of high entropy alloys (HEAs) have attracted enormous attention recently. Among these alloys a recently developed face-centered cubic (fcc) equiatomic VCoNi alloy revealed extraordinary high yield strength, exceeding previous hi ...

Invar effects in FeNiCo medium entropy alloys

From an Invar treasure map to alloy design

To facilitate the understanding of Invar effects and design of FeNiCo-base Invar alloys characterized by low thermal expansion coefficient (TEC), we investigated the magnetic and thermal expansion behavior of an equiatomic prototype medium entropy alloy FeNiCo and a non-equiat ...

Severe lattice distortion is a core effect in the design of multiprincipal element alloys with the aim to enhance yield strength, a key indicator in structural engineering. Yet, the yield strength values of medium- and high-entropy alloys investigated so far do not substantial ...

Interstitial alloying in CrMnFeCoNi-based high-entropy alloys is known to modify their mechanical properties. Specifically, strength can be increased due to interstitial solid-solution hardening, while simultaneously affecting ductility. In this paper, first-principles calculatio ...

Recently, high-entropy alloys (HEAs) have attracted wide attention due to their extraordinary materials properties. A main challenge in identifying new HEAs is the lack of efficient approaches for exploring their huge compositional space. Ab initio calculations have emerged as ...

We study the mutual coupling of spin fluctuations and lattice vibrations in paramagnetic CrN by combining atomistic spin dynamics and ab initio molecular dynamics. The two degrees of freedom are dynamically coupled, leading to nonadiabatic effects. Those effects suppress the p ...

Medium and high entropy alloys (MEAs and HEAs) based on 3d transition metals, such as face-centered cubic (fcc) CrCoNi and CrMnFeCoNi alloys, reveal remarkable mechanical properties. The stacking fault energy (SFE) is one of the key ingredients that controls the underlying def ...

A first-principles-based computational tool for simulating phonons of magnetic random solid solutions including thermal magnetic fluctuations is developed. The method takes fluctuations of force constants due to magnetic excitations as well as due to chemical disorder into acc ...

Quantum-mechanical calculations are used to determine the temperature dependence of the Gibbs energy of vacancy formation in nickel. Existing data reveal a discrepancy between the high-temperature estimates from experiments and low-temperature approximations from density funct ...

The temperature-dependent intrinsic stacking fault Gibbs energy is computed based on highly converged density-functional-theory (DFT) calculations for the three prototype face-centered cubic metals Al, Cu, and Ni. All relevant temperature-dependent contributions are considered ...

We introduce a new class of high-entropy alloys (HEAs), i.e., quinary (five-component) dual-phase (DP) HEAs revealing transformation-induced plasticity (TRIP), designed by using a quantum mechanically based and experimentally validated approach. Ab initio simulations of thermo ...

The spin-space averaging formalism is applied to compute atomic forces and phonon spectra for magnetically excited states of fcc nickel. Transverse and longitudinal magnetic fluctuations are taken into account by a combination of magnetic special quasi random structures and co ...