WT

Authored

8 records found

We assess the effect of substrate heterogeneity on the metabolic response of P. chrysogenum in industrial bioreactors via the coupling of a 9-pool metabolic model with Euler-Lagrange CFD simulations. In this work, we outline how this coupled hydrodynamic-metabolic modeling can be ...
In a 54 m3 large-scale penicillin fermentor, the cells experience substrate gradient cycles at the timescales of global mixing time about 20–40 s. Here, we used an intermittent feeding regime (IFR) and a two-compartment reactor (TCR) to mimic these substrate gradients at laborato ...
The compartment model (CM) is a well-known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbia ...
In large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a ...
The objective of this research study is to be able to scale-up and optimize aerobic fermentation processes via computer simulations. As an example the production of penicillin by P. chrysogenum is studied. In vivo kinetics of the cell can be understood by conducting stimulus resp ...
The objective of this research study is to be able to scale-up and optimize aerobic fermentation processes via computer simulations. As an example the production of penicillin by P. chrysogenum is studied. In vivo kinetics of the cell can be understood by conducting stimulus resp ...
The objective of this research study is to be able to scale-up and optimize aerobic fermentation processes via computer simulations. As an example the production of penicillin by P. chrysogenum is studied. In vivo kinetics of the cell can be understood by conducting stimulus resp ...