WV

Wouter A. Van Winden

15 records found

This chapter deals with fermentation processes, converting low cost renewable feedstocks into valuable bio-products, with the help of microorganisms or mammalian cells in bioreactors or fermenters. In industrial vessels, the volumetric conversion rate, i.e. the fermentation inten ...
The objective of this research study is to be able to scale-up and optimize aerobic fermentation processes via computer simulations. As an example the production of penicillin by P. chrysogenum is studied. In vivo kinetics of the cell can be understood by conducting stimulus resp ...
In this study, prolonged chemostat cultivation is applied to investigate in vivo enzyme kinetics of Saccharomyces cerevisiae. S. cerevisiae was grown in carbon-limited aerobic chemostats for 70–95 generations, during which multiple steady states were observed, characterized by co ...
Metabolic-flux analyses in microorganisms are increasingly based on 13C-labeling data. In this paper a new approach for the measurement of 13C-label distributions is presented: rapid sampling and quenching of microorganisms from a cultivation, followed by extraction and detection ...
The currently applied reaction structure in stoichiometric flux balance models for the nonoxidative branch of the pentose phosphate pathway is not in accordance with the established ping-pong kinetic mechanism of the enzymes transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1. ...

MIRACLE

Mass Isotopomer Ratio Analysis of U-13C-Labeled Extracts. A New Method for Accurate Quantification of Changes in Concentrations of Intracellular Metabolites

First, we report the application of stable isotope dilution theory in metabolome characterization of aerobic glucose limited chemostat culture of S. cerevisiae CEN.PK 113-7D using liquid chromatography - electrospray ionization MS/MS (LC-ESI-MS/MS). A glucose-limited chemostat cu ...

Cumulative bondomers

A new concept in flux analysis from 2D [13C,1H] COSY NMR data

A well-established way of determining metabolic fluxes is to measure 2D [13C,1H] COSY NMR spectra of components of biomass grown on uniformly 13C-labeled carbon sources. When using the entire set of measured data to simultaneously determine all fluxes in a proposed metabolic netw ...
The 13C-labeling technique was introduced in the field of metabolic engineering as a tool for determining fluxes that could not be found using the ‘classical’ method of flux balancing. An a priori flux identifiability analysis is required in order to determine whether a 13C-label ...