MB

Matthias Brauns

Authored

7 records found

The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems in order to eliminate s ...
A Ge–Si core–shell nanowire is used to realize a Josephson field-effect transistor with highly transparent contacts to superconducting leads. By changing the electric field, access to two distinct regimes, not combined before in a single device, is gained: in the accumulation mod ...
We present a Josephson junction based on a Ge-Si core-shell nanowire with transparent superconducting Al contacts, a building block which could be of considerable interest for investigating Majorana bound states, superconducting qubits, and Andreev (spin) qubits. We demonstrate t ...
We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic fields to spin-flip cotunneli ...
We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a sepa ...
We present angle-dependent measurements of the effective g factor g in a Ge-Si core-shell nanowire quantum dot. g is found to be maximum when the magnetic field is pointing perpendicularly to both the nanowire and the electric field induced by local gates. Alignment of the magnet ...
We report highly tunable control of holes in Ge/Si core/shell nanowires. We demonstrate the ability to create single quantum dots of various sizes, with low hole occupation numbers and clearly observable excited states. For the smallest dot size, we observe indications of single- ...