AR

A.L. Rigotti Manesco

Authored

10 records found

Quasi-flat-bands emerging in buckled monolayer graphene superlattices have been recently shown to realize correlated states analogous to those observed in twisted graphene multilayers. Here, we demonstrate the emergence of valley topology driven by competing electronic correlatio ...
We report multiterminal measurements in a ballistic bilayer graphene (BLG) channel, where multiple spin- and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes along different crystallographic directions, we ...
Electronic correlations stemming from nearly flat bands in van der Waals materials have demonstrated to be a powerful playground to engineer artificial quantum matter, including superconductors, correlated insulators and topological matter. This phenomenology has been experimenta ...
Electronic correlations stemming from nearly flat bands in van der Waals materials have demonstrated to be a powerful playground to engineer artificial quantum matter, including superconductors, correlated insulators and topological matter. This phenomenology has been experimenta ...
In the present work, we investigate the electronic and elastic properties in equilibrium and under strain of the type-II Dirac semimetal NiTe2 using density functional theory. Our results demonstrate the tunability of Dirac nodes' energy and momentum with strain and that it is po ...
We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al. Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the ...
Caroli-de Gennes-Matricon (CdGM) states are localized states with a discrete energy spectrum bound to the core of vortices in superconductors. In topological superconductors, CdGM states are predicted to coexist with zero energy, chargeless states widely known as Majorana zero mo ...
In this Rapid Communication, we have examined the superconducting ground state of the HfV2Ga4 compound using resistivity, magnetization, zero-field (ZF), and transverse-field (TF) muon-spin relaxation and rotation (μSR) measurements. Resistivity and magnetization unveil the onset ...
We theoretically predict spatial separation of spin-polarized ballistic currents in transition metal dichalcogenides (TMDs) due to trigonal warping. We quantify the effect in terms of spin polarization of charge carrier currents in a prototypical 3-terminal ballistic device where ...
We propose a practical implementation of a universal quantum computer that uses local fermionic modes (LFM) rather than qubits. The device consists of quantum dots tunnel-coupled by a hybrid superconducting island and a tunable capacitive coupling between the dots. We show that c ...