HC

Herman J.H. Clercx

13 records found

Authored

When two spherical particles submerged in a viscous fluid are subjected to an oscillatory flow, they align themselves perpendicular to the direction of the flow leaving a small gap between them. The formation of this compact structure is attributed to a nonzero residual flow k ...

The alignment of a pair of spherical particles perpendicular to a horizontally oscillating flow is attributed to a non-zero residual flow, known as steady streaming. This phenomenon is the basis of complex patterns in denser systems, such as particle chains and the initial stages ...

Abstract: We discuss the application of synthetic aperture particle image velocimetry for measuring the flow around human swimmers using small bubbles as tracer. We quantify the two-dimensional projection of the velocity field in planes perpendicular to the viewing direction o ...

The present study concerns Lagrangian transport and (chaotic) advection in three-dimensional (3D) flows in cavities under steady and laminar conditions. The main goal is to investigate topological equivalences between flow classes driven by different forcing; streamline patterns ...
We perform direct numerical simulation of the Couette flow as a model for the stable boundary layer. The flow evolution is investigated for combinations of the (bulk) Reynolds number and the imposed surface buoyancy flux. First, we establish what the similarities and differences ...

In this paper a video-based method to automatically track instantaneous velocities of a swimmer is presented. Single cameras were used to follow a marker (LED) attached to the body. The method is inspired by particle tracking techniques, traditionally used in the field of flui ...

The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast ...

This study aims to find the typical growth rate of the temperature inversion during the onset of the stable boundary layer around sunset.The sunset transition is a very challenging period for numerical weather prediction, since neither accepted theories for the convective boun ...

Three-dimensional particle tracking velocimetry (3D-PTV) is a promising technique to study the behavior of granular flows. The aim of this paper is to cross-validate 3D-PTV against independent or more established techniques, such as particle image velocimetry (PIV), electronic ul ...

The behavior of spherical particles flowing down a three-dimensional chute, inclined at fixed angle, is commonly simulated by a discrete element method (DEM). DEM is nowadays a standard tool for numerical studies of e.g. gas-solid fluidized beds. We have modified DEM for the s ...

A discrete element model (DEM) is used to investigate the behavior of spherical particles flowing down a semicylindrical rotating chute. The DEM simulations are validated by comparing with particle tracking velocimetry results of spherical glass particles flowing through a smooth ...

A discrete element model of spherical glass particles flowing down a rotating chute is validated against high quality experimental data. The simulations are performed in a corotating frame of reference, taking into account Coriolis and centrifugal forces. In view of future ext ...

In blast furnaces, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from particle segregation during transportation caused by differences in density or size. To ge ...