IV

I. Vollmer

Authored

20 records found

Mo/ZSM-5 is one of the most studied and efficient catalysts for the dehydroaromatization of methane (MDA), but the mechanism of its operation remains controversial. Here, we combine an ab initio thermodynamic analysis with a comprehensive mechanistic density functional theory stu ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...

Erratum to

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process (Nature Chemistry, (2018), 10, 8, (804-812), 10.1038/s41557-018-0081-0)

In the version of this Article originally published, on the right side of Fig. 4b, the ‘Aromatic cycle’ label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article ...
The catalytic performance of the bifunctional catalyst Mo/HZSM-5 for methane dehydroaromatization (MDA) depends on the Mo dispersion and on zeolite acidity. Here we separately quantify the effect of dispersion and the effe ...
The active sites on the methane dehydroaromatization (MDA) catalyst Mo/HZSM-5 are very hard to characterize, because they are present in various geometries and sizes and only form under reaction conditions with methane at 700 °C. To address these issues an experimental strategy i ...
In view of rising global demand for aromatics as starting chemical for many commodity goods as well as pharmaceuticals, new routes for production are explored. Since the advent of fracking, natural gas has become increasingly cheap and direct utilization for aromatics production ...
To secure future supply of aromatics, methane is a commercially interesting alternative feedstock. Direct conversion of methane into aromatics combines the challenge of activating one of the strongest C-H bonds in all hydrocarbons with the selective aromatization over zeolites. T ...
The mechanism of methane activation on Mo/HZSM-5 is poorly described, despite the great interest in methane dehyd roa romatization (MDA) to replace oil refineries for producing aromatics. It is difficult to assess the exact nature of the active site due to fast coking. By pre-car ...
The mechanism of methane activation on Mo/HZSM-5 is poorly described, despite the great interest in methane dehyd roa romatization (MDA) to replace oil refineries for producing aromatics. It is difficult to assess the exact nature of the active site due to fast coking. By pre-car ...
Methane dehydroaromatization (MDA) over Mo/HZSM-5 has been hypothesized in literature to proceed via a two-step mechanism: methane is first converted to ethylene on the molybdenum (Mo) functionality and then ethylene is oligomerized, cyclized and dehydrogenated on the Brønsted ac ...
The mechanism of methane activation on Mo/HZSM-5 is not yet fully understood, despite the great interest in methane dehydroaromatization (MDA) to replace aromatics production in oil refineries. It is difficult to assess the exact nature of the active site due to fast coking. By p ...
Although the local geometry of Mo in Mo/HZSM-5 has been characterized before, we present a systematic way to manipulate the configuration of Mo and link it to its catalytic properties. The location and geometry of cationic Mo-complexes, the precursor of the active metal site for ...
The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure–performance descriptors for processes that they catalyse has been a matter of ...
The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure–performance descriptors for processes that they catalyse has been a matter of ...
Producing aromatics directly from the smallest hydrocarbon building block, methane, is attractive because it could help satisfy increasing demand for aromatics while filling the gap created by decreased production from naphtha crackers. The system that catalyzes the direct methan ...