LK

Léon V.E. Koopmans

Authored

8 records found

Peering into the dark (ages) with low-frequency space interferometers

Using the 21-cm signal of neutral hydrogen from the infant universe to probe fundamental (Astro)physics

The Dark Ages and Cosmic Dawn are largely unexplored windows on the infant Universe (z ~ 200–10). Observations of the redshifted 21-cm line of neutral hydrogen can provide valuable new insight into fundamental physics and astrophysics during these eras that no other probe can pro ...
For subspace estimation with an unknown colored noise, Factor Analysis (FA) and its extensions, denoted as Extended FA (EFA), are good candidates for replacing the popular eigenvalue decomposition (EVD). Finding the unknowns in (E)FA can be done by solving a non-linear least squa ...
Having an accurate calibration method is crucial for any scientific research done by a radio telescope. The next generation radio telescopes such as the Square Kilometre Array (SKA) will have a large number of receivers which will produce exabytes of data per day. In this paper w ...
The radio sky at frequencies below ∼30 MHz is virtually unobservable from Earth due to ionospheric disturbances and the opaqueness of the ionosphere below ∼10MHz, and also due to strong terrestrial radio interference. Deploying a radio observatory in space would open up this larg ...
The radio sky at frequencies below ∼30 MHz is virtually unobservable from Earth due to ionospheric disturbances and the opaqueness of the ionosphere below ∼10MHz, and also due to strong terrestrial radio interference. Deploying a radio observatory in space would open up this larg ...
The radio sky at frequencies below ∼30 MHz is virtually unobservable from Earth due to ionospheric disturbances and the opaqueness of the ionosphere below ∼10MHz, and also due to strong terrestrial radio interference. Deploying a radio observatory in space would open up this larg ...
The radio sky at frequencies below ∼30 MHz is virtually unobservable from Earth due to ionospheric disturbances and the opaqueness of the ionosphere below ∼10MHz, and also due to strong terrestrial radio interference. Deploying a radio observatory in space would open up this larg ...
The radio sky at frequencies below ∼30 MHz is virtually unobservable from Earth due to ionospheric disturbances and the opaqueness of the ionosphere below ∼10MHz, and also due to strong terrestrial radio interference. Deploying a radio observatory in space would open up this larg ...