High-Energy Radiation Effects on Silicon NPN Bipolar Transistor Electrical Performance
A Study with 1 MeV Proton Irradiation
Haddou El Ghazi (Hassan II University of Casablanca, University of Sidi Mohamed Ben Abdullah)
Redouane En-nadir (University of Sidi Mohamed Ben Abdullah)
Anouar Jorio (University of Sidi Mohamed Ben Abdullah)
Mohamed A. Basyooni-M.Kabatas (TU Delft - Dynamics of Micro and Nano Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This study investigates the degradation of the silicon NPN transistor’s emitter-base junction, specifically the 2N2219A model, under both forward and reverse polarization. We examine the current–voltage characteristics under the influence of 1 MeV proton irradiation at various fluencies, which are 5.3×108,5.3×1010,5×1011,5×1012, and 5×1013 protons/cm², all conducted at 307 K. The experimental findings elucidate a pronounced dependency of diode parameters, including the reverse saturation current, series resistance, and the non-idealist factor, on the incident proton flow. This observation underscores that proton-induced degradation is primarily driven by displacement damage, while recorded degradation is predominantly attributed to the generation of defects and interfacial traps within the transistor resulting from exposure to high-energy radiation. Our findings indicate that the effects of irradiation align more closely with the compensation phenomenon in doping rather than its reinforcement.