VZ

Val Zwiller

Authored

7 records found

Superconducting nanowire single-photon detectors

A perspective on evolution, state-of-the-art, future developments, and applications

Two decades after their demonstration, superconducting nanowire single-photon detectors (SNSPDs) have become indispensable tools for quantum photonics as well as for many other photon-starved applications. This invention has not only led to a burgeoning academic field with a wide ...
Hybrid integration provides an important avenue for incorporating atom-like solid-state single-photon emitters into photonic platforms that possess no optically-active transitions. Hexagonal boron nitride (hBN) is particularly interesting quantum emitter for hybrid integration, a ...
Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circui ...
Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counti ...
Shortly after their inception, superconducting nanowire single-photon detectors (SNSPDs) became the leading quantum light detection technology. With the capability of detecting single-photons with near-unity efficiency, high time resolution, low dark count rate, and fast recovery ...
Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing. The ability of superconducting nanowire single photon detectors (SNSPDs) to detect single photons with unprecedented efficiency, short dead time, and high t ...
Ultra-high system detection efficiency (SDE) s uperconducting nanowire single-photon detectors are demonstrated for a broad range of wavelengths, from UV to mid-infrared, opening novel possibilities in the fields of quantum photonics, neuroimaging and astronomy.@en

Contributed

1 records found

In the past decades, generating single photons on demand with well defined quantum states and detecting them after photon-photon or photon-matter interaction are central to the area of quantum optics and quantum information science. The ability to detect light efficiently at the ...