LM

Laurens W. Molenkamp

Authored

14 records found

Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states t ...
We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron-electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define th ...
This article reviews recent thermoelectric experiments on quantum dot (QD) systems. The experiments focus on two types of inter-dot coupling: tunnel coupling and Coulomb coupling. Tunnel-coupled QDs allow particles to be exchanged between the attached reservoirs via the QD system ...
We investigate theoretically the dynamics of a Josephson junction in the framework of the resistively shunted junction model. We consider a junction that hosts two supercurrent contributions: a 2π and a 4π periodic in phase, with intensities I2π and I4π, respectively. We study th ...
We have observed thermal gating, i.e. electrostatic gating induced by hot electrons. The effect occurs in a device consisting of two capacitively coupled quantum dots. The double dot system is coupled to a hot electron reservoir on one side (QD1), while the conductance of the sec ...
The proximity-induced superconducting state in the three-dimensional topological insulator HgTe has been studied using electronic transport of a normal metal-superconducting point contact as a spectroscopic tool (Andreev point-contact spectroscopy). By analyzing the conductance a ...
Entropy is a fundamental thermodynamic quantity indicative of the accessible degrees of freedom in a system. While it has been suggested that the entropy of a mesoscopic system can yield nontrivial information on emergence of exotic states, its measurement in such small electron- ...
Fluctuations are strong in mesoscopic systems and have to be taken into account for the description of transport. We show that they can even be used as a resource for the operation of a system as a device. We use the physics of single-electron tunneling to propose a bipartite dev ...
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a t ...
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a t ...
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a t ...
A superconductor, when exposed to a spin-exchange field, can exhibit spatial modulation of its order parameter, commonly referred to as the Fulde–Ferrell–Larkin–Ovchinnikov state. Such a state can be induced by controlling the spin-splitting field in Josephson junction devices, a ...
A superconductor, when exposed to a spin-exchange field, can exhibit spatial modulation of its order parameter, commonly referred to as the Fulde–Ferrell–Larkin–Ovchinnikov state. Such a state can be induced by controlling the spin-splitting field in Josephson junction devices, a ...
Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power. So far, most concepts have made use of the Seebeck effect in a two-terminal geomet ...