Authored

20 records found

Benzimidazole linked polymers (BILPs) in mixed-matrix membranes

Influence of filler porosity on the CO<sub>2</sub>/N<sub>2</sub> separation performance

The performance of mixed-matrix membranes (MMMs) based on Matrimid® and benzimidazole-linked polymers (BILPs) have been investigated for the separation CO2/N2 and the dependency on the filler porosity. BILPs with two different porosities (BILP-101 and RT-BILP-101) were synthesize ...

Mixed-matrix membranes containing an azine-linked covalent organic framework

Influence of the polymeric matrix on post-combustion CO<sub>2</sub>-capture

The use of an azine-linked covalent organic framework (ACOF-1) as filler in mixed-matrix membranes (MMMs) has been studied for the separation of CO2 from N2. To better understand the mechanisms that govern separation in complex composites, MMMs were prepared with different loadin ...
Membrane technology has attracted great industrial interest in carbon capture and separation owing to the merits of energy-efficiency, environmental friendliness and low capital investment. Conventional polymeric membranes for CO2 separation suffer from the trade-off between perm ...
Increasing helium use in research and production processes necessitates separation techniques to secure sufficient supply of this noble gas. Energy-efficient helium production from natural gas is still a big challenge. Membrane gas separation technology could play an important ro ...
The preparation and the performance of mixed matrix membranes based on metal-organic polyhedra (MOPs) are reported. MOP fillers can be dispersed as discrete molecular units (average 9 nm in diameter) when low filler cargos are used. In spite of the low doping amount (1.6 wt %), a ...
Mixed-matrix membranes (MMMs) comprising Matrimid and a microporous azine-linked covalent organic frameworks (ACOF-1) were prepared and tested in the separation of CO2 from an equimolar CO2/CH4 mixture. The COF-based MMMs show a more than doubling of the CO2 permeability upon 16 ...
High permeable and selective membranes are expected to be a promising alternative for low cost and energy efficient CO2 separation. However, the preparation and development of highly permeable and selective membranes are limited by the trade-off effect. Here, we prepared a stabil ...
High permeable and selective membranes are expected to be a promising alternative for low cost and energy efficient CO2 separation. However, the preparation and development of highly permeable and selective membranes are limited by the trade-off effect. Here, we prepared a stabil ...
High permeable and selective membranes are expected to be a promising alternative for low cost and energy efficient CO2 separation. However, the preparation and development of highly permeable and selective membranes are limited by the trade-off effect. Here, we prepared a stabil ...
High permeable and selective membranes are expected to be a promising alternative for low cost and energy efficient CO2 separation. However, the preparation and development of highly permeable and selective membranes are limited by the trade-off effect. Here, we prepared a stabil ...
High permeable and selective membranes are expected to be a promising alternative for low cost and energy efficient CO2 separation. However, the preparation and development of highly permeable and selective membranes are limited by the trade-off effect. Here, we prepared a stabil ...
High permeable and selective membranes are expected to be a promising alternative for low cost and energy efficient CO2 separation. However, the preparation and development of highly permeable and selective membranes are limited by the trade-off effect. Here, we prepared a stabil ...
We demonstrate that b-oriented MFI (Mobil Five) zeolite membranes can be manufactured by in situ crystallization using an intermediate amorphous SiO2 layer. The improved in-plane growth by using a zeolite growth modifier leads to fusion of independent crystals and eliminates boun ...
We demonstrate that b-oriented MFI (Mobil Five) zeolite membranes can be manufactured by in situ crystallization using an intermediate amorphous SiO2 layer. The improved in-plane growth by using a zeolite growth modifier leads to fusion of independent crystals and eliminates boun ...
It is demonstrated that moderate oxygen vacancies can greatly improve the photo-responsive performance of Zinc oxide (ZnO) nanoparticles thin film/p-Si heterojunctions. The ZnO nanoparticles thin film/p-Si heterojunctions ...
It is demonstrated that moderate oxygen vacancies can greatly improve the photo-responsive performance of Zinc oxide (ZnO) nanoparticles thin film/p-Si heterojunctions. The ZnO nanoparticles thin film/p-Si heterojunctions ...
It is demonstrated that moderate oxygen vacancies can greatly improve the photo-responsive performance of Zinc oxide (ZnO) nanoparticles thin film/p-Si heterojunctions. The ZnO nanoparticles thin film/p-Si heterojunctions ...
It is demonstrated that moderate oxygen vacancies can greatly improve the photo-responsive performance of Zinc oxide (ZnO) nanoparticles thin film/p-Si heterojunctions. The ZnO nanoparticles thin film/p-Si heterojunctions ...
It is demonstrated that moderate oxygen vacancies can greatly improve the photo-responsive performance of Zinc oxide (ZnO) nanoparticles thin film/p-Si heterojunctions. The ZnO nanoparticles thin film/p-Si heterojunctions ...
It is demonstrated that moderate oxygen vacancies can greatly improve the photo-responsive performance of Zinc oxide (ZnO) nanoparticles thin film/p-Si heterojunctions. The ZnO nanoparticles thin film/p-Si heterojunctions ...