SS

S. Stallinga

80 records found

Richardson-Lucy (RL) deconvolution optimizes the likelihood of the object estimate for an incoherent imaging system. It can offer an increase in contrast, but converges poorly, and shows enhancement of noise as the iteration progresses. We have discovered the underlying reason fo ...
Structured illumination microscopy (SIM) is a powerful method for high-resolution 3D-imaging that is compatible with standard fluorescence labeling techniques, as it provides optical sectioning as well as an up to twofold improvement of lateral resolution over widefield microscop ...
Multispectral imaging is an established method to extend the number of colours usable in fluorescence imaging beyond the typical limit of three or four. However, standard approaches are poorly suited to live-cell imaging owing to the need to separate light into many spectral chan ...
Image quality in single-molecule localization microscopy depends largely on the accuracy and precision of the localizations. While under ideal imaging conditions, the theoretically obtainable precision and accuracy are achieved; in practice, this changes if (field-dependent) aber ...
We address (super)resolution assessment of light microscopy via Fourier Ring Correlation (FRC), based on a single camera image. Based on Poisson statistics we can split an image into two noise independent halves, and use this to compute the FRC. The technique is demonstrated on w ...
DNA-origami nanostructures have shown promising applications in single molecule localization microscopy. They have become a reference standard for benchmarking and for developing new techniques for nanoscopy. Here, we present a pipeline for quantifying the quality of these nano-s ...
We address resolution assessment for (light super-resolution) microscopy imaging. In modalities where imaging is not diffraction limited, correlation between two noise independent images is the standard way to infer the resolution. Here we take away the need for two noise indepen ...
Richardson-Lucy deconvolution can offer an increase in contrast, but converges poorly, and is sensitive to noise. We show that the Cramér Rao Lower Bound (CRLB) diverges, which explains the problematic behaviour.
Correction to: Scientific Reports, published online 16 August 2023 The original version of this Article contained an error in the upper inset of Figure 4, where the atomic model was missing. The original Figure 4 and accompanying legend appear below. (Figure presented.) Overlay o ...
Fusion of multiple chemically identical complexes, so-called particles, in localization microscopy, can improve the signal-to-noise ratio and overcome under-labeling. To this end, structural homogeneity of the data must be assumed. Biological heterogeneity, however, could be pres ...
Single molecule localization microscopy offers resolution nearly down to the molecular level with specific molecular labelling, and is thereby a promising tool for structural biology. In practice, however, the actual value to this field is limited primarily by incomplete fluoresc ...
Combining orientation estimation with localization microscopy opens up the possibility to analyze the underlying orientation of biomolecules on the nanometer scale. Inspired by the recent improvement of the localization precision by shifting excitation patterns (MINFLUX, SIMFLUX) ...
Modulation enhanced single-molecule localization microscopy (meSMLM) methods improve the localization precision by using patterned illumination to encode additional position information. Iterative meSMLM (imeSMLM) methods iteratively generate prior information on emitter position ...
Super-resolution fluorescence microscopy can be achieved by image reconstruction after spatially patterned illumination or sequential photo-switching and read-out. Reconstruction algorithms and microscope performance are typically tested using simulated image data, due to a lack ...
Single-molecule localization microscopy has developed into a widely used technique to overcome the diffraction limit and enables 3D localization of single-emitters with nanometer precision. A widely used method to enable 3D encoding is to use a cylindrical lens or a phase mask to ...
One of the fundamental limits of classical optical microscopy is the diffraction limit of optical resolution. It results from the finite bandwidth of the optical transfer function (or OTF) of an optical microscope, which restricts the maximum spatial frequencies that are transmit ...
Summary: We present a fast particle fusion method for particles imaged with single-molecule localization microscopy. The state-of-the-art approach based on all-to-all registration has proven to work well but its computational cost scales unfavorably with the number of particles N ...
Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and overcomes underlabeling, but ignores structural heterogeneity or conformational variability. We present a-priori knowledge-free unsupervised classification of structurally different par ...
Estimating the orientation and 3D position of rotationally constrained emitters with localization microscopy typically requires polarization splitting or a large engineered Point Spread Function (PSF). Here we utilize a compact modified PSF for single molecule emitter imaging to ...
Total internal reflection fluorescence (TIRF) microscopy is an important imaging tool for the investigation of biological structures, especially the study on cellular events near the plasma membrane. Imaging at cryogenic temperatures not only enables observing structures in a nea ...