Circular Image

S.H. Hossein Nia Kani

120 records found

Reset control enhances the performance of high-precision mechatronics systems. This paper introduces a generalized reset feedback control structure that integrates a single reset-state reset controller, a shaping filter for tuning reset actions, and linear compensators arranged i ...

Active Piezoelectric Metastructures

Relationship of Bandgap Formation With Unit Cell Number and Modal Behaviour

Elastic piezoelectric metastructures with actively implemented resonators offer an opportunity for novel vibration attenuation solutions, thanks to the possibility of creating bandgaps at low frequencies, their tuneability and compactness. We focus on metastructures with sensors ...

Active damping control of higher-order resonance mode in positioning systems

Application to prototype compliant dual positioning stage

In precision positioning systems, lightly damped higher-order resonance modes can induce undesirable vibrations that degrade system performance and accuracy. These resonances pose additional challenges in non-collocated dual-stage positioning systems, where they significantly lim ...
Contactless handling systems for substrates hold significant potential in enhancing chip manufacturing yields by allowing the use of thinner and larger substrates, eliminating the risks associated with physical contact. This article introduces a novel contactless force actuator, ...
This article introduces an output prediction method for a general class of closed-loop reset control systems. The considered type of system consists of a linear time-invariant (LTI) part which is connected in feedback with a reset controller that (partially) resets (a part of) it ...

Enhancing reset control phase with lead shaping filters

Applications to precision motion systems

This study presents a shaped reset feedback control strategy to enhance the performance of precision motion systems. The approach utilizes a phase-lead compensator as a shaping filter to tune the phase of reset instants, thereby shaping the nonlinearity in the first-order reset c ...
This article introduces output prediction methods for two types of systems containing sinusoidal-input uniformly convergent (SIUC) elements. The first method considers these elements in combination with single-input single-output linear time-invariant (LTI) systems before, after, ...
In this note, we present an extension of the nonlinear negative imaginary (NI) systems theory to reset systems. We define the reset negative imaginary (RNI) and reset strictly negative imaginary (RSNI) systems and provide a state-space characterization of these systems in terms o ...

Hybrid Tunable Magnet Actuator

Design of a Linearized Force-Flux Tunable Magnet Actuator

Recent studies have shown that tunable magnets (soft permanent magnets) can significantly reduce Joule heating in electromagnetic actuators. To achieve high motion accuracy and repeatability, this article proposes a novel actuator design with a linearized force-flux relation. In ...
In this work, the proportional Clegg integrator (PCI), a resetting proportional-integrator (PI) element, is studied with the aim of improving the performance of an industrial motion stage currently controlled by a linear controller. A novel parallel continuous reset (CR) architec ...
Reset controllers have demonstrated their efficacy in enhancing transient responses, such as the overshoot and response time in motion control systems. Designing these systems to meet specific transient requirements requires a method for analyzing transient responses. However, th ...
This study delves into the nonlinear dynamics of metamaterials, exploring the dual objective of enhancing power output and achieving vibration suppression through piezoelectric energy harvesters (PEHs). Our approach is structured into a sequence of increasingly complex models tha ...
The frequency response describes the steady-state behavior of a control system to sinusoidal inputs across varying frequencies and serves as an effective tool for system design. In closed-loop reset control systems, frequency response analysis reveals two distinct scenarios: syst ...
In this article, the problem of the optimal reset control design for Lipschitz nonlinear systems is addressed. The reset controller includes a base linear controller and a reset law that enforces resets to the controller states. The reset law design is strongly dependent on the a ...

Bandgap Dynamics in Locally Resonant Metastructures

A General Theory of Internal Resonator Coupling

The dynamics of metastructures, incorporating both conventional and internally coupled resonators, are investigated to enhance vibration suppression capabilities through a novel mathematical framework. A close-form formulation and a transfer function methodology are introduced, i ...

Frequency response analysis for reset control systems

Application to predict precision of motion systems

The frequency response analysis describes the steady-state responses of a system to sinusoidal inputs at different frequencies, providing control engineers with an effective tool for designing control systems in the frequency domain. However, conducting this analysis for closed-l ...
This article explores internally coupled resonators in metamaterial systems, focusing on mechanical and electromechanical coupling. The article provides a thorough examination of stability within the context of internally coupled resonators. It establishes stability criteria, emp ...
This work proposes a novel nonlinear Proportional-Integral (PI) controller, which utilizes a generalized first-order reset element. The proposed element can achieve similar magnitude-characteristics as its linear counterpart but with less phase lag at the open-loop crossover freq ...
This study explores the optimization of bandgap characteristics in locally resonant metastructures through advanced artificial intelligence (AI) and optimization algorithms, focusing on the accurate estimation of resonator damping ratios. By developing a novel mathematical framew ...