YL

29 records found

On-shore horizontal-axis wind turbines (HAWTs) provide a cost-effective solution for low carbon electricity generation. However, public acceptance is still a problem. A possible alternative to a HAWT is a vertical-axis wind turbine (VAWT), which is more visually appealing and les ...
The combined wind speed estimator and tip-speed ratio (WSE–TSR) tracking wind turbine control scheme has seen recent and increased traction from the wind industry. The modern control scheme provides a flexible trade-off between power and load objectives. On the other hand, the Kω ...
The combined wind speed estimator and tip speed ratio (WSE-TSR) tracking control scheme is widely used to regulate power production for large-scale modern wind turbines. Although very effective, such an advanced control scheme, based on the prior model information, is highly depe ...
The knowledge of the Effective wind speed (EWS) allows the designing of wind turbine controllers that regulate power production and reduce loads on turbine components. Traditional single-point measurements are known to suffer from high noise and poor correlation with the EWS. As ...
Economic model predictive control (EMPC) has received increasing attention in the wind energy community due to its ability to trade-off economic objectives with ease. However, for wind turbine applications, inherent nonlinearities, such as from aerodynamics, pose difficulties in ...
Wind turbine partial-load controllers have evolved from simple static nonlinear function implementations to more advanced dynamic controller structures. Such dynamic control schemes have the potential to improve power production performance in realistic environmental conditions a ...
Modern industrial wind turbine controllers for partial-load region control are becoming increasingly complex by progressively relying on modeled aerodynamic characteristics. These advanced turbine controllers generally consist of a combined wind speed estimator and tracking contr ...
Individual pitch control (IPC) is a well-known approach to reduce blade loads on wind turbines. Although very effective, IPC usually requires high levels of actuator activities, which significantly increases the pitch actuator duty cycle (ADC). This will subsequently result in an ...
In the next decade, further digitalisation of the entire wind energy project lifecycle is expected to be a major driver for reducing project costs and risks. In this paper, a literature review on the challenges related to implementation of digitalisation in the wind energy indust ...
The estimation of the rotor effective wind speed is used in modern wind turbines to provide advanced power and load control capabilities. However, with the ever increasing rotor sizes, the wind field over the rotor surface shows a higher degree of spatial variation. A single effe ...
The current trend in the evolution of wind turbines is to increase their rotor size in order to capture more power. This leads to taller, slender and more flexible towers, which thus experience higher dynamical loads due to the turbine rotation and environmental factors. It is he ...

Error Features in Predicting Typhoon Winds

A Case Study Comparing Simulated and Measured Data

Simulating a typhoon’s wind field via mesoscale models is important in terms of providing not only the guidelines for urban planning and onshore/offshore constructions, but also the provision of insight into the dynamics and thermodynamics of tropical cyclone systems. Therefore, ...
The wind turbine side-side tower motion is known to be lightly damped. One viable active damping solution is realized by deploying individual pitch control (IPC) such that counteracting blade forces are created to alleviate the tower fatigue loading caused by this motion. Existin ...
In recent years, industrial controllers for modern wind turbines have been designed as a combined wind speed estimator and tip-speed ratio (WSE-TSR) tracking control scheme. In contrast to the conventional and widely used Kω 2 torque control strategy, the WSE-TSR scheme provides ...
The Immersion and Invariance (II) wind speed estimator is a powerful and widely-used technique to estimate the rotor effective wind speed on horizontal axis wind turbines. Anyway, its global convergence proof is rather cumbersome, which hinders the extension of the method and pro ...
Over the past decades, Floating Offshore Wind Turbine (FOWT) has gained increasing attention in wind engineering due to the rapidly growing energy demands. However, difficulties in turbine maintenance will increase due to the harsh operational conditions. Fault diagnosis techniqu ...
Individual pitch control (IPC) is an effective and widely used strategy to mitigate blade loads in wind turbines. However, conventional IPC fails to cope with blade and actuator faults, and this situation may lead to an emergency shutdown and increased maintenance costs. In this ...
Floating Offshore Wind Turbines (FOWTs) operate in the harsh marine environment with limited accessibility and maintainability. Not only failures are more likely to occur than in land-based turbines, but also corrective maintenance is more expensive. In the present study, a mixed ...
In this article, a novel data-driven fault diagnosis method by combining deep canonical variate analysis and Fisher discriminant analysis (DCVA-FDA) is proposed for complex industrial processes. Inspired by the recently developed deep canonical correlation analysis, a new nonline ...

Blade Effective Wind Speed Estimation

A Subspace Predictive Repetitive Estimator Approach

Modern wind turbine control algorithms typically utilize rotor effective wind speed measured from an anemometer on the turbine’s nacelle. Unfortunately, the measured wind speed from such a single measurement point does not give a good representation of the effective wind speed ov ...