CS
C.J. Simao Ferreira
190 records found
1
...
This study investigates the potential of regenerative wind farming using multirotor systems equipped with paired multirotor-sized wings, termed atmospheric boundary layer control (ABL-control) devices, positioned in the near-wake region of the multirotor. These ABL-control device
...
Numerical simulations of wind farms consisting of innovative wind energy harvesting systems are conducted. The novel wind harvesting system is designed to generate strong lift (vertical force) with lifting-devices. It is demonstrated that the tip-vortices generated by these lifti
...
Large wind turbines face more intricate atmospheric conditions with turbulent coherent structures sized similarly to the rotor diameter, posing loading challenges. The present study assesses twelve distinct wind fields using the Large Eddy Simulations (LES) and International Elec
...
Recent studies have revealed the large potential of vertical-axis wind turbines (VAWTs) for high-energy-density wind farms due to their favorable wake recovery characteristics. The present study provides an experimental demonstration and proof-of-concept for the wake recovery mec
...
This study presents findings from a wind tunnel experiment investigating a model wind turbine equipped with aft-swept blades. Utilising particle image velocimetry, velocity fields were measured at multiple radial stations. These allow the derivation of blade-level aerodynamic par
...
The Horizon 2020 European Commission-funded project - X-ROTOR - proposes a radical rethink of the traditional vertical-axis wind turbine geometry. The X-Rotor vertical axis wind turbine relies on blade-tip mounted rotors, referred to as secondary rotors, for power generation and
...
Maximizing wind farm power output with the helix approach
Experimental validation and wake analysis using tomographic particle image velocimetry
Wind farm control can play a key role in reducing the negative impact of wakes on wind turbine power production. The helix approach is a recent innovation in the field of wind farm control, which employs individual blade pitch control to induce a helical velocity profile in a win
...
Vertical-axis wind turbines (VAWTs), particularly in offshore wind farms, are gaining attention for their capacity to potentially enhance wake recovery and increase the power density of wind farms. Previous research on VAWT wake control strategies have demonstrated that the pitch
...
Vertical axis wind turbines (VAWTs) have been identified as a technology that, in association with wake steering, can increase power density of wind farms. In this study, we validate a free wake method for VAWT wake prediction, which leads to satisfactory results. We then use thi
...
With distributed propulsion and electric vertical take-off and landing aircraft on the rise, fast and accurate methods to simulate propeller slipstreams and their interaction with aircraft components are needed. In this work, we compare results obtained with a filament-based free
...
Operating a conventional propeller at negative thrust results in the operation of positively cambered blade sections at negative angles of attack, leading to flow separation. Consequently, accurately simulating the aerodynamics of propellers operating at negative thrust poses a g
...
This article presents a comparison study of different aerodynamic models for an X-shaped vertical-axis wind turbine and offers insight into the 3D aerodynamics of this rotor at fixed pitch offsets. The study compares six different numerical models: a double-multiple streamtube (D
...
In contemporary wind farm design, the primary focus has traditionally been on reducing wake interference to optimize energy capture from horizontal wind flows. However, with the scaling up of wind farms, their interaction with the Atmospheric Boundary Layer (ABL) evolves, making
...
This study investigates the near-wake aerodynamics of actuator disks (multirotor devices) paired with lift-generating devices (rotor-sized wings, dubbed ABL-control devices). These rotor-sized wings generate vortical structures that enhance the vertical momentum flux from above t
...
With the growing trend towards larger wind turbine rotor diameters, the impact of wind shear on rotor performance and loads becomes increasingly significant. Atmospheric stability strongly influences wind shear, leading to higher wind shear under stable atmospheric conditions. In
...
This study assesses the wake recovery mechanism between an H-type Darrieus and an X-type vertical-axis wind turbine, named H-Rotor and X-Rotor respectively for different blade pitch offset configurations. The analysis is conducted in OpenFOAM using the actuator line method to mod
...
The airfoil DU91-W2-150 was investigated in the Low Speed Low Turbulence Tunnel at the Delft University of Technology to study unsteady aerodynamics. This experimental study tested the airfoil under a wide range of angles of attack (AoA) from 0 ◦ to 3 1 0 ◦ at three Reynolds numb
...
To investigate the effect of force distributions of each turbine component on the power performance of the Darrieus–Savonius combined vertical axis wind turbine (hybrid VAWT), the hybrid VAWT is modeled as idealized turbine under various force distributions. The goal of idealizat
...
As the demand for renewable energy increases, wind turbine rotors will become larger with slender blades. Vortex Generators (VGs) are used for passive flow control to avoid flow separation and reduce unsteady loading on the thick root section of slender blades due to their simpli
...
Hybrid computational solvers that integrate Eulerian and Lagrangian methods are emerging as powerful tools in computational fluid dynamics, particularly for external aerodynamics. These solvers rely on the strengths of both approaches: Eulerian methods efficiently handle boundary
...