Authored

20 records found

Molecular simulation of tunable materials

Metal-organic frameworks & ionic liquids theory & application

Undoubtedly, materials that can be tuned on a molecular level offer tremendous opportunities. However, to understand and customize such materials is challenging. In this context, molecular simulation can be helpful. The work presented in this thesis deals with two types of materi ...

Thermodynamic and transport properties of crown-ethers

Force field development and molecular simulations

Crown-ethers have recently been used to assemble porous liquids (PLs), which are liquids with permanent porosity formed by mixing bulky solvent molecules (e.g., 15-crown-5 ether) with solvent-inaccessible organic cages. PLs and crown-ethers belong to a novel class of materials, w ...

OCTP

A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order- n Algorithm in LAMMPS

We present a new plugin for LAMMPS for on-the-fly computation of transport properties (OCTP) in equilibrium molecular dynamics. OCTP computes the self- and Maxwell-Stefan diffusivities, bulk and shear viscosities, and thermal conductivities of pure fluids and mixtures in a single ...
Mutual diffusion coefficients can be successfully predicted with models based on the Darken equation. However, Darken-based models require composition-dependent self-diffusion coefficients which are rarely available. In this work, we present a predictive model for composition-dep ...
Vapour–liquid equilibrium (VLE) and volumetric data of multicomponent mixtures are extremely important for natural gas production and processing, but it is time consuming and challenging to experimentally obtain these properties. An alternative tool is provided by means of molecu ...
To use high-temperature waste heat generated by diesel engines for onboard refrigeration of fishing vessels, an ammonia-based double-effect vapor absorption refrigeration cycle is proposed. Non-volatile ionic liquids are applied as absorbents in the double-effect absorption syste ...
Natural gas, synthesis gas, and flue gas typically contain a large number of impurities (e.g., acidic gases), which should be removed to avoid environmental and technological problems, and to meet customer specifications. One approach is to use physical solvents to remove the aci ...
Monte Carlo (MC) simulations in ensembles with a fixed chemical potential or fugacity, for example the grand-canonical or the osmotic ensemble, are often used to compute phase equilibria. Chemical potentials can be computed either with an equation of state (EoS) or from molecular ...
An increase in demand for energy efficient processes for the separation of saturated and unsaturated light hydrocarbons mixtures drives the need of noncryogenic processes. The adsorptive separation using Metal-Organic Frameworks with coordinatively unsaturated metal sites may pro ...
Force Field based Monte Carlo (MC) simulations are conducted to predict the performance of an absorption heat pump cycle involving NH3/ionic liquid (IL) (refrigerant/absorbent) as working pair. To investigate the thermodynamic performance of the cycle, various properties such as ...
Metal organic frameworks are frequently examined as potential solutions to complex gas phase separations problems. In many cases, the gas phase adsorption properties of these materials are quantified using single component ...
Metal organic frameworks are frequently examined as potential solutions to complex gas phase separations problems. In many cases, the gas phase adsorption properties of these materials are quantified using single component ...
This paper assesses the performance of vapor–liquid equilibrium (VLE) models in ionic liquid based absorption cycles with natural refrigerants. Frequently used equation-of-state (EOS) based models, activity coefficient based models, and generic Clausius–Clapeyron relations are ev ...
Ionic liquid (IL)-NH3 double-effect absorption systems are proposed to utilize the high-temperature exhausted gas (250-500 oC) from engines with the purpose of delivering the required refrigeration of the fishing vessel. In this work, practical concerns on the stabilities, toxici ...
Molecular Dynamics simulations were performed for the prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of molecular mixtures and a wide variety of binary Lennard-Jones systems. A strong dependency of computed diffusivities on the system size was obse ...
(Graph Presented) The family of M-MOF-74, with M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, V, and Zn, provides opportunities for numerous energy related gas separation applications. The pore structure of M-MOF-74 exhibits a high internal surface area and an exceptionally large adsorption ...
The separation of light olefins from paraffins via cryogenic distillation is a very energy intensive process. Solid adsorbents and especially metal-organic frameworks with open metal sites have the potential to significantly lower the required energy. Specifically, M-MOF-74 has d ...
For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle s ...
On the short term, carbon capture is a viable solution to reduce human-induced CO2 emissions, which requires an energy efficient separation of CO2. Metal-organic frameworks (MOFs) may offer opportunities for carbon capture and other industrially relevant separations. Especially, ...