J.D. Jansen
200 records found
1
...
Pore pressure fluctuation in subsurface reservoirs and its resulting mechanical response can cause fault reactivation. Numerical simulation of such induced seismicity is important to develop reliable seismic hazard and risk assessments. However, modeling of fault reactivation is
...
We critically review the derivation of closed-form analytical expressions for elastic displacements, strains, and stresses inside a subsurface reservoir undergoing pore pressure changes using inclusion theory. Although developed decades ago, inclusion theory has been used recentl
...
We present expressions to compute the inverse of a Cauchy-type singular integral equation representing the relation between a double-peaked Coulomb stress in a fault or fracture and the resulting slip gradient in two distinct collinear slip patches. In particular we consider a si
...
A general trend in the use of the Dutch deep subsurface is a shift from hydrocarbon production to geothermal energy production and subsurface storage of CO2 and H2. A broad mistrust by the general public, and many local governments, of any deep-subsurfacerelated activity leads to
...
This note provides the derivation of closed-form expressions for elastic displacements, strains, and stresses inside an inclusion. Jansen et al. (2019) and Wu et al. (2021) obtained correct expressions for the stresses inside an inclusion, but their derivation of these expression
...
Recent laboratory and field studies suggest that temporal variations in injection patterns (e.g., cyclic injection) might trigger less seismicity than constant monotonic injection. This study presents results from uniaxial compressive experiments performed on Red Felser sandstone
...
This note provides unregularized and regularized closed-form analytical expressions for the depletion-induced or injection-induced pre-slip Coulomb stresses in two-dimensional displaced dip-slip faults. The regularization serves to remove logarithmic singularities and jump-discon
...
Quantification of the poromechanical response of subsurface formations due to human-induced pore pressure fluctuations is critical for the performance and stability assessment of many geo-energy systems. In particular, natural faults in the subsurface introduce the hazard of indu
...
We consider steady-state single-phase confined flow through a subsurface porous layer containing a displaced, fully conductive fault causing a sudden jump in the flow path, and we employ (semi-)analytical techniques to compute the corresponding pressures and fault stresses. In pa
...
We address aseismic fault slip and the onset of seismicity resulting from depletion-induced or injection-induced stresses in reservoirs with pre-existing vertical or inclined faults. Building on classic results, we discuss semi-analytical modelling techniques for fault slip inclu
...
We present a scalable collocated Finite Volume Method (FVM) to simulate induced seismicity as a result of pore pressure changes. A discrete system is obtained based on a fully-implicit fully-coupled description of flow, elastic deformation, and contact mechanics at fault surfaces
...
A smoothed embedded finite-volume modeling (sEFVM) method is presented for faulted and fractured heterogeneous poroelastic media. The method casts a fully coupled strategy to treat the coupling between fault slip mechanics, deformation mechanics, and fluid flow equations. This en
...
An increasing number of geo-energy applications require the quantitative prediction of hydromechanical response in subsurface. Integration of mass, momentum, and energy conservation laws becomes essential for performance and risk analysis of enhanced geothermal systems, stability
...
We develop a collocated Finite Volume Method (FVM) to study induced seismicity as a result of pore pressure fluctuations. A discrete system is obtained based on a fully-implicit coupled description of flow, elastic deformation, and contact mechanics at fault surfaces on a fully u
...
We explore and develop a Proper Orthogonal Decomposition (POD)-based deflation method for the solution of ill-conditioned linear systems, appearing in simulations of two-phase flow through highly heterogeneous porous media. We accelerate the convergence of a Preconditioned Conjug
...
Soft Layer
A work of art by Toshitaka Nishizawa for the Mijnbouwkundige Vereeniging
This booklet provides additional information to the work of art 'Soft Layer' located in front of the faculty of Civil Engineering and Geosciences. This piece of art is an initiative of students and alumni of the Mijnbouwkundige Vereeniging and has been revealed on the 24th of Feb
...
In data assimilation problems, various types of data are naturally linked to different spatial resolutions (e.g., seismic and electromagnetic data), and these scales are usually not coincident to the subsurface simulation model scale. Alternatives like upscaling/downscaling of th
...
We propose a novel adaptive, adjoint-based, iterative multiscale finite volume (i-MSFV) method. The method aims to reduce the computational cost of the smoothing stage of the original i-MSFV method by selectively choosing fine-scale sub-domains (or sub-set of primary variables) t
...
We introduce a semi-analytical iterative multiscale derivative computation methodology that allows for error control and reduction to any desired accuracy, up to fine-scale precision. The model responses are computed by the multiscale forward simulation of flow in heterogeneous p
...