Forming, in a decentralized fashion, an optimal network topology while balancing multiple, possibly conflicting objectives like cost, high performance, security and resiliency to viruses is a challenging endeavor. In this paper, we take a game-formation approach to network design
...

Forming, in a decentralized fashion, an optimal network topology while balancing multiple, possibly conflicting objectives like cost, high performance, security and resiliency to viruses is a challenging endeavor. In this paper, we take a game-formation approach to network design where each player, for instance an autonomous system in the Internet, aims to collectively minimize the cost of installing links, of protecting against viruses, and of assuring connectivity. In the game, minimizing virus risk as well as connectivity costs results in sparse graphs. We show that the Nash Equilibria are trees that, according to the Price of Anarchy (PoA), are close to the global optimum, while the worst-case Nash Equilibrium and the global optimum may significantly differ for small infection rate and link installation cost. Moreover, the types of trees, in both the Nash Equilibria and the optimal solution, depend on the virus infection rate, which provides new insights into how viruses spread: for high infection rate τ, the path graph is the worst- and the star graph is the best-case Nash Equilibrium. However, for small and intermediate values of τ, trees different from the path and star graphs may be optimal.
@en