Circular Image

34 records found

This paper proposes an integral approach for accurate ultra-wideband indoor position control of flapping-wing micro-air vehicles. Three aspects are considered to achieve a reliable and accurate position controller. The first aspect is a velocity/attitude flapping-wing model for d ...
Natural fliers utilize passive and active flight control strategies to cope with windy conditions. This capability makes them incredibly agile and resistant to wind gusts. Here, we study how insects achieve this, by combining Computational Fluid Dynamics (CFD) analyses of flying ...
This paper discusses a low-cost, open-source and open-hardware design and performance evaluation of a low-speed, multi-fan wind system dedicated to micro air vehicle (MAV) testing. In addition, a set of experiments with a flapping wing MAV and rotorcraft is presented, demonstrati ...
This paper proposes an integral approach for accurate ultra wide band indoor position control of flapping wing micro air vehicles. Three aspects are considered to reach a reliable and accurate position controller. The first aspect is a velocity/attitude flapping-wing model for dr ...
Studies of insect flight reveal how flapping-induced vibrations augment flight stability of tailless flapping-wing flyers.@en
In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that compared to their larger counterparts, they have the potential to be safer, ...
Tailless flapping wing micro aerial vehicles (FMWAVs) are known for their light weight and agility. However, given the fact that these FWMAVs have been developed only recently, their flight dynamics have not yet been fully explained. In this paper we develop grey-box models for t ...
Abstract: The objective of this experimental investigation is the volumetric visualization of the near wake topology of the vortex structures generated by a flapping-wing micro air vehicle. To achieve the required visualization domain (which in the present experiments amounts to ...
This study investigates the wing deformation of the DelFly II in forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the flapping wings for all pitch angles. Recordings of a high-speed camera pair were processed using a point track ...
The evasive banked turn of a fly is among the most rapid flight maneuvers in nature, which it executes using small adjustments in its wingbeat pattern. It is suggested that, after open-loop turn initiation, flies control the bank dynamics using a PI controller based on sensory in ...
Flow visualisations are essential to better understand the unsteady aerodynamics of flapping wing flight. The issues inherent to animal experiments, such as poor controllability and unnatural flapping when tethered, can be avoided by using robotic flyers that promise for a more s ...
This study investigates the wing deformation of a flapping-wing micro air vehicle (MAV) in climbing and forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the wings for all pitch angles. Recordings of a high-speed camera pair are ...
Hovering flapping wing flight is intrinsically unstable in most cases and requires active flight stabilization mechanisms. This paper explores the passive stability enhancement with the addition of top and bottom sails, and the capability to predict the stability from a very simp ...
Recently, several insect- and hummingbird-inspired tailless flapping wing robots have been introduced. However, their flight dynamics, which are likely to be similar to that of their biological counterparts, remain yet to be fully understood. We propose a minimal dynamic model th ...
In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that, compared to their larger counterparts, they have the potential to be safer ...
Flow visualizations have been performed on a free flying, flapping-wing micro air vehicle (MAV), using a large-scale particle image velocimetry (PIV) approach. The PIV method involves the use of helium-filled soap bubbles (HFSB) as tracer particles. HFSB scatter light with much h ...
Insects are among the most agile natural flyers.Hypotheses on their flight control cannot always be validated by experiments with animals or tethered robots.To this end, we developed a programmable and agile autonomous free-flying robot controlled through bio-inspired motion chan ...
Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable ...
One of the emerging tasks for Micro Air Vehicles (MAVs) is autonomous indoor navigation. While commonly employed platforms for such tasks are micro-quadrotors, insectinspired flapping wing MAVs can offer many advantages, such
as being inherently safe due to their low inertia, ...