FH
F. E. Hudson
5 records found
1
Single holes confined in semiconductor quantum dots are a promising platform for spin-qubit technology, due to the electrical tunability of the g factor of holes. However, the underlying mechanisms that enable electric spin control remain unclear due to the complexity of hole-spi
...
Valence band holes confined in silicon quantum dots are attracting significant attention for use as spin qubits. However, experimental studies of single-hole spins have been hindered by challenges in fabrication and stability of devices capable of confining a single hole. To full
...
Silicon quantum dot spin qubits provide a promising platform for large-scale quantum computation because of their compatibility with conventional CMOS manufacturing and the long coherence times accessible using 28Si enriched material. A scalable error-corrected quantum processor,
...
The understanding of weak measurements and interaction-free measurements has greatly expanded the conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-strength weak measurements of the electron and nuclear spin states of a P31
...
We define single electron spin qubits in a silicon metal-oxide-semiconductor double quantum dot system. By mapping the qubit resonance frequency as a function of a gate-induced electric field, the spectrum reveals an anticrossing that is consistent with an intervalley spin-orbit
...