Authored

7 records found

Achieving nanoscale strain fields mapping in intricate van der Waals (vdW) nanostructures, like twisted flakes and nanorods, presents several challenges due to their complex geometry, small size, and sensitivity limitations. Understanding these strain fields is pivotal as they si ...
Twisted 2D materials present an enticing platform for exploring diverse electronic properties owning to the tunability of their bandgap energy. However, the intricate relationship between local heterostrain fields, thickness, and bandgap energy remains insufficiently understood, ...
Chromium dioxide (CrO2) nanowires with their half-metallic ferromagnetic properties have shown great promise in spintronics applications. However, growth of such wires remains challenging. We used the Selective Area growth method to fabricate high quality epitaxial CrO2 wires on ...
The fabrication of 2D materials, such as transition metal dichalcogenides (TMDs), in geometries beyond the standard platelet-like configuration exhibits significant challenges which severely limit the range of available morphologies. These challenges arise due to the anisotropic ...
Layered materials (LMs) such as graphene or MoS2 have attracted a great deal of interest recently. These materials offer unique functionalities due to their structural anisotropy characterized by weak van der Waals bonds along the out-of-plane axis and covalent bonds in the in-pl ...
Transition metal dichalcogenides such as MoS2 represent promising candidates for building blocks of ultra-thin nanophotonic devices. For such applications, vertically-oriented MoS2 (v-MoS2) nanosheets could be advantageous as compared to conventional horizontal MoS2 (h-MoS2) give ...
Visualizing charge carrier flow over interfaces or near surfaces meets great challenges concerning resolution and vastly different time scales of bulk and surface dynamics. Ultrafast or four-dimensional scanning electron microscopy (USEM) using a laser pump electron probe scheme ...