H. van der Kooij
112 records found
1
Exoskeleton balance support can improve the ability to counteract perturbations. The process of human adaptation to this support, however, remains unclear. Here, we assessed how able-bodied individuals adapted to balance support provided by an ankle exoskeleton during walking, sp
...
Background/Objectives: “Hermes” is an ankle–foot orthosis (AFO) with negative stiffness designed to mechanically compensate the symptomatic increase in plantarflexion (PF) torque (i.e., ankle joint torque resistance to dorsiflexion, DF) in patients with spastic paresis. Methods:
...
Sagittal-plane balance perturbations during very slow walking
Strategies for recovering linear and angular momentum
Spatiotemporal gait characteristics change during very slow walking, a relevant speed considering individuals with movement disorders or using assistive devices. However, we lack insights in how very slow walking affects human balance control. Therefore, we aimed to identify how
...
Background: Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. Methods: Humans restore bala
...
In this paper we presented the mechanical design and evaluation of a low-profile and lightweight exoskeleton that supports the finger extension of stroke patients during daily activities without applying axial forces to the finger. The exoskeleton consists of a flexible structure
...
Individuals with an upper motor neuron syndrome, e.g., stroke survivors, may have a pathological increase of passive ankle stiffness due to spasticity, that impairs ankle function and activities such as walking. To improve mobility, walking aids such as ankle-foot orthoses and or
...
Background: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood,
...
Increasing knowledge on human balance recovery strategies is important for the development of balance assistance strategies using assistive devices like a powered lower-limb exoskeleton. One of the postures which is relevant for this scenario, but underexposed in research, is sta
...
Series elastic actuators (SEA) with their inherent compliance offer a safe torque source for robots that are interacting with various environments, including humans. These applications have high requirements for the SEA torque controllers, both in the torque response as well as i
...
Lumbar joint compression forces have been linked to the development of chronic low back pain, which is specially present in occupational environments. Offline methodologies for lumbosacral joint compression force estimation are not commonly integrated in occupational or medical a
...
People with severe muscle weakness in the upper extremity are in need of an arm support to enhance arm function and improve their quality of life. In addition to weight support, compensation of passive joint impedance (pJimp) seems necessary. Existing devices do not compensate fo
...
Humans prioritize regulation of the whole-body angular momentum (WBAM) during walking. When perturbed, modulations of the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) assist in recovering WBAM. For sagittal-plane perturbations of the WBAM
...
Healthy individuals highly regulate their whole body angular momentum (WBAM) during walking. Since WBAM regulation is essential in maintaining balance, a better understanding is required on how healthy individuals recover from WBAM perturbations. We therefore studied how healthy
...
Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assesse
...
BACKGROUND: In the last two decades, lower-limb exoskeletons have been developed to assist human standing and locomotion. One of the ongoing challenges is the cooperation between the exoskeleton balance support and the wearer control. Here we present a cooperative ankle-exoskelet
...
Joint impedance plays an important role in postural control and movement. However, current experimental knowledge on lower limb impedance during gait is limited to the ankle joint. We designed the LOwer limb PERturbator (LOPER) aimed to assess knee and hip joint impedance during
...
Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack
...
Reducing the Soleus Stretch Reflex With Conditioning
Exploring Game- and Impedance-Based Biofeedback
People with spasticity, i.e., stretch hyperreflexia, have a limited functional independence and mobility. While a broad range of spasticity treatments is available, many treatments are invasive, non-specific, or temporary and might have negative side effects. Operant conditioning
...
Motorized assessment of the stretch reflex is instrumental to gain understanding of the stretch reflex, its physiological origin and to differentiate effects of neurological disorders, like spasticity. Both short-latency (M1) and medium-latency (M2) stretch reflexes have been rep
...
Centre of mass (CoM) motion during human balance recovery is largely influenced by the ground reaction force (GRF) and the centre of pressure (CoP). During gait, foot placement creates a region of possible CoP locations in the following double support (DS). This study aims to inc
...