This Letter presents a combined analytical and experimental method to effectively decouple the radial and tangential residual stress fields induced by Berkovich nanoindentation in single-crystalline 4H-SiC using micro-Raman spectroscopy. By integrating the Raman stress characteri
...
This Letter presents a combined analytical and experimental method to effectively decouple the radial and tangential residual stress fields induced by Berkovich nanoindentation in single-crystalline 4H-SiC using micro-Raman spectroscopy. By integrating the Raman stress characterization model with Yoffe’s expanding cavity model, precise extraction of individual residual stress components around the indentation region is realized. Through the vertical backscattering micro-Raman mapping of the E2 phonon mode, we systematically investigate the residual stress distribution near the indentation. The results highlight significant anisotropy in nanoindentation-induced stress fields, strongly dependent on the crystal orientation of 4H-SiC, predominantly featuring radial tensile stress gradients. This comprehensive theoretical–experimental approach offers a robust optical framework for residual stress characterization in 4H-SiC and provides foundational insights for extending Raman spectroscopy-based stress characterization to other crystalline materials and related device structures.