Circular Image

B.H.K. De Schutter

772 records found

In this chapter, we explore model predictive control of fuel cell electric vehicles (FCEVs), a type of vehicle that utilizes the chemical energy of hydrogen to generate electricity for their power train. Since vehicles are typically utilized for mobility purposes only for a fract ...
Greenhouse climate control is concerned with maximizing performance in terms of crop yield and resource efficiency. One promising approach is model predictive control (MPC), which leverages a model of the system to optimize the control inputs, while enforcing physical constraints ...
Implementing model predictive control (MPC) in practice faces many subtle but prevalent problems, including modeling errors, solver errors, and actuator faults. In essence, the real control input applied to the system always deviates from the ideal one based on a perfect controll ...
Temperature plays a critical role in performance and stability of anaerobic digestion processes, subject to frequent meteorological fluctuations. However, state-of-the-art modeling and process control approaches for anaerobic digestion often do not consider the temporal dynamics ...
Control of piecewise affine (PWA) systems under complex constraints faces challenges in guaranteeing both safety and online computational efficiency. Learning-based methods can rapidly generate control signals with good performance, but rarely provide safety guarantees. A safety ...
Uncertainty in the behavior of other traffic participants is a crucial factor in collision avoidance for automated driving; here, stochastic metrics could avoid overly conservative decisions. This article introduces a stochastic model predictive control (SMPC) planner for emergen ...
In this paper, the disjunctive and conjunctive lattice piecewise affine (PWA) approximations of explicit linear model predictive control (MPC) are proposed. Training data consisting of states and corresponding affine control laws are generated in a control invariant set, and redu ...
In the backdrop of an increasingly pressing need for effective urban and highway transportation systems, this work explores the synergy between model-based and learning-based strategies to enhance traffic flow management by use of an innovative approach to the problem of ramp met ...
Game-theoretic models are frequently used to analyse the effects of information availability and quality on supply chain decision-making. Although information asymmetry plays a vital role in shaping sustainable supply chains, a comprehensive review of these models within this ...
Maintenance is a necessary to keep assets, in this case, a pavement system, in good condition. Spending too much on maintenance is not efficient, while not spending enough may cause the condition to drop below a desired level. Therefore, in this paper, a conceptual approach, base ...
The partitioning problem is a key problem for distributed control techniques. The problem consists in the definition of the subnetworks of a dynamical system that can be considered as individual control agents in the distributed control approach. Despite its relevance and the dif ...
Infinite-horizon optimal control of constrained piecewise affine (PWA) systems has been approximately addressed by hybrid model predictive control (MPC), which, however, has computational limitations, both in offline design and online implementation. In this article, we consider ...
Model mismatch often presents significant challenges in model-based controller design. This paper investigates model predictive control (MPC) for uncertain linear systems with input constraints, where the uncertainty is characterized by a parametric mismatch between the true syst ...

Approximate dynamic programming for constrained linear systems

A piecewise quadratic approximation approach

Approximate dynamic programming (ADP) faces challenges in dealing with constraints in control problems. Model predictive control (MPC) is, in comparison, well-known for its accommodation of constraints and stability guarantees, although its computation is sometimes prohibitive. T ...
Scenario reduction algorithms can be an effective means to provide a tractable description of the uncertainty in optimal control problems. However, they might significantly compromise the performance of the controlled system. In this paper, we propose a method to compensate for t ...
Nonlinear Programs (NLPs) are prevalent in optimization-based control of nonlinear systems. Solving general NLPs is computationally expensive, necessitating the development of fast hardware or tractable suboptimal approximations. This paper investigates the sensitivity of the sol ...

Model predictive control of purple bacteria in raceway reactors

Handling microbial competition, disturbances, and performance

Purple Phototrophic Bacteria (PPB) are increasingly being applied in resource recovery from wastewater. Open raceway-pond reactors offer a more cost-effective option, but subject to biological and environmental perturbations. This study proposes a hierarchical control system base ...
This paper proposes an approach to find the eigenvalues and eigenvectors of a class of autonomous max-min-plus-scaling (MMPS) systems. First we show that time invariant, monotone and non-expansive MMPS systems with only time variables has a unique structural eigenvalue and eigenv ...
In this article we consider the problem of tether entanglement for tethered mobile robots. One of the main risks of using a tethered connection between a mobile robot and an anchor point is that the tether may get entangled with the obstacles present in the environment or with it ...
Humans and autonomous vehicles will jointly use the roads in smart cities. Therefore, it is a requirement for autonomous vehicles to properly handle the information and uncertainties that are introduced by humans (e.g., drivers, pedestrians, traffic managers) into the traffic, to ...