Ultra-thin electron collectors based on nc-Si:H for high-efficiency silicon heterojunction solar cells
Y. Zhao (TU Delft - Photovoltaic Materials and Devices)
L. Mazzarella (TU Delft - Photovoltaic Materials and Devices)
P.A. Procel Moya (University San Francisco de Quito, TU Delft - Photovoltaic Materials and Devices)
Can Han (TU Delft - Photovoltaic Materials and Devices, Shenzhen Institute of Wide-bandgap Semiconductors)
F. Tichelaar (Kavli institute of nanoscience Delft, TU Delft - QN/Afdelingsbureau)
G Yang (TU Delft - Photovoltaic Materials and Devices)
Arthur Weeber (TU Delft - Photovoltaic Materials and Devices)
Miro Zeman (TNO - Energy Transition, TU Delft - Electrical Sustainable Energy)
Olindo Isabella (TU Delft - Photovoltaic Materials and Devices)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Low parasitic absorption and high conductivity enable (n)-type hydrogenated nanocrystalline silicon [(n)nc-Si:H], eventually alloyed with oxygen [(n)nc-SiOx:H], to be deployed as window layer in high-efficiency silicon heterojunction (SHJ) solar cells. Besides the appropriate opto-electrical properties of these nanocrystalline films, reduction of their thickness is sought for minimizing parasitic absorption losses. Many strategies proposed so far reveal practical limits of the minimum (n)-layer thickness that we address and overcome in this manuscript. We demonstrated the successful application of an ultra-thin layer of only 3-nm-thick based on (n)nc-Si:H PECVD plasma growth conditions without the use of additional contact or buffer layers. For simplicity, we still name (n)nc-Si:H this ultra-thin layer and the solar cell endowed with it delivers a certified efficiency η of 22.20%. This cell shows a 0.61 mA/cm2 overall JSC gain over the (n)a-Si:H counterpart mainly owing to the higher transparency of (n)nc-Si:H, while maintaining comparable VOC > 714 mV and FF > 80%. Our optimized (n)nc-Si:H layer yields low absorption losses that are commonly measured for (n)nc-SiOx:H films. In this way, we are able to avoid the detrimental effect that oxygen incorporation has on the electrical parameters of these functional layers. Further, by applying a MgF2/ITO double-layer anti-reflection coating, a cell with 3-nm-thick (n)nc-Si:H exhibits a JSC,EQE up to 40.0 mA/cm2. By means of EDX elemental mapping, we additionally identified the (n)nc-Si:H/ITO interface as critical for electron transport due to unexpected oxidation. To avoid this interfacial oxidation, insertion of a 2-nm-thick (n)a-Si:H on the 3-nm-thick (n)nc-Si:H contributes to FF gains of 1.4%abs. (FF increased from 78.6% to 80.0%), and showing further room for improvements.