Mapping-aware Biased Training for Accurate Memristor-based Neural Networks
S.S. Diware (TU Delft - Computer Engineering)
A.B. Gebregiorgis (TU Delft - Computer Engineering)
Rajiv V. Joshi (TU Delft - Computer Engineering, IBM Research)
Said Hamdioui (TU Delft - Quantum & Computer Engineering)
R.K. Bishnoi (TU Delft - Computer Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Memristor-based computation-in-memory (CIM) can achieve high energy efficiency by processing the data within the memory, which makes it well-suited for applications like neural networks. However, memristors suffer from conductance variation problem where their programmed conductance values deviate from the desired values. Such variations lead to computational errors that result in degraded inference accuracy in CIM-based neural networks. In this paper, we present a mapping-aware biased training methodology to mitigate the impact of conductance variation on CIM-based neural networks. We first determine which conductance states of the memristor are inherently more immune to variation. The neural network is then trained under the constraint that important weights can only take numeric values which directly get mapped to such favorable states. Simulation results show that our proposed mapping-aware biased training achieves up to 2.4× hardware accuracy compared to the conventional training.