Centimeter-Scale Synthesis of Ultrathin Layered MoO3 by van der Waals Epitaxy

Journal Article (2016)
Authors

A.J. Molina-Mendoza (Universidad Autónoma de Madrid)

José L. Lado (International Iberian Nanotechnology Laboratory)

Joshua O. Island (TU Delft - QN/van der Zant Lab)

Miguel Angel Ninõ (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))

Luciá Aballe (ALBA Synchrotron Light Facility)

Michael Foerster (ALBA Synchrotron Light Facility)

Flavio Y. Bruno (Université de Genève)

Alejandro López-Moreno (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))

Luis Vaquero-Garzon (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))

Herre S.J. van der Zant (TU Delft - QN/van der Zant Lab)

Gabino Rubio-Bollinger (Universidad Autónoma de Madrid)

Nicolás Agrait (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Universidad Autónoma de Madrid)

Emilio M. Pérez (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))

Joaquin Fernández-Rossier (International Iberian Nanotechnology Laboratory)

A Castellanos-Gomez (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))

Research Group
QN/van der Zant Lab
To reference this document use:
https://doi.org/10.1021/acs.chemmater.6b01505
More Info
expand_more
Publication Year
2016
Language
English
Research Group
QN/van der Zant Lab
Issue number
11
Volume number
28
Pages (from-to)
4042-4051
DOI:
https://doi.org/10.1021/acs.chemmater.6b01505

Abstract

We report on the large-scale synthesis of highly oriented ultrathin MoO3 layers using a simple and low-cost atmospheric pressure, van der Waals epitaxy growth on muscovite mica substrates. By this method, we are able to synthesize high quality centimeter-scale MoO3 crystals with thicknesses ranging from 1.4 nm (two layers) up to a few nanometers. The crystals can be easily transferred to an arbitrary substrate (such as SiO2) by a deterministic transfer method and be extensively characterized to demonstrate the high quality of the resulting crystal. We also study the electronic band structure of the material by density functional calculations. Interestingly, the calculations demonstrate that bulk MoO3 has a rather weak electronic interlayer interaction, and thus, it presents a monolayer-like band structure. Finally, we demonstrate the potential of this synthesis method for optoelectronic applications by fabricating large-area field-effect devices (10 μm × 110 μm in lateral dimensions) and find responsivities of 30 mA W-1 for a laser power density of 13 mW cm-2 in the UV region of the spectrum and also as an electron acceptor in a MoS2-based field-effect transistor.

No files available

Metadata only record. There are no files for this record.