PK

P. Krogstrup

Authored

11 records found

Author Correction

Continuous monitoring of a trapped superconducting spin (Nature Physics, (2020), 16, 11, (1103-1107), 10.1038/s41567-020-0952-3)

In this Letter the following original sentence has been amended for clarity: “As the Kramers theorem does not hold in the presence of a non-zero weak-link phase bias φ, the splitting of the spin states requires an additional ingredient.”; it has been changed to: “Although the pre ...
Josephson junctions in InAs nanowires proximitized with an Al shell can host gate-tunable Andreev bound states. Depending on the bound state occupation, the fermion parity of the junction can be even or odd. Coherent control of Andreev bound states has recently been achieved with ...
We present a hybrid semiconductor-based superconducting qubit device that remains coherent at magnetic fields up to 1 T. The qubit transition frequency exhibits periodic oscillations with the magnetic field, consistent with interference effects due to the magnetic flux threading ...
We investigate transmon qubits made from semiconductor nanowires with a fully surrounding superconducting shell. In the regime of reentrant superconductivity associated with the destructive Little-Parks effect, numerous coherent transitions are observed in the first reentrant lob ...
We study the electronic properties of InAs/EuS/Al heterostructures as explored in a recent experiment, combining both spectroscopic results and microscopic device simulations. In particular, we use angle-resolved photoemission spectroscopy to investigate the band bending at the I ...
Superconducting resonators enable fast characterization and readout of mesoscopic quantum devices. Finding ways to perform measurements of interest on such devices using resonators only is therefore of great practical relevance. We report an experimental investigation of an InAs ...
Electrostatic charging affects the many-body spectrum of Andreev states, yet its influence on their microwave properties has not been elucidated. We developed a circuit quantum electrodynamics probe that, in addition to transition spectroscopy, measures the microwave susceptibili ...
Quantum hardware based on circuit quantum electrodynamics makes extensive use of airbridges to suppress unwanted modes of wave propagation in coplanar-waveguide transmission lines. Airbridges also provide an interconnect enabling transmission lines to cross. Traditional airbridge ...
The modern understanding of the Josephson effect in mesosopic devices derives from the physics of Andreev bound states, fermionic modes that are localized in a superconducting weak link. Recently, Josephson junctions constructed using semiconducting nanowires have led to the real ...
Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macro ...
Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the devic ...