TM

12 records found

Authored

Emerging 4D printing techniques have enabled the realization of smart materials whose shape or properties can change with time. Two important phenomena play important roles in the 4D printing of shape memory polymeric materials. First, the anisotropic deformation of the printe ...

Automated Folding of Origami Lattices

From Nanopatterned Sheets to Stiff Meta-Biomaterials

Folding nanopatterned flat sheets into complex 3D structures enables the fabrication of meta-biomaterials that combine a rationally designed 3D architecture with nanoscale surface features. Self-folding is an attractive approach for realizing such materials. However, self-fold ...

We designed and fabricated a simple setup for the controlled crumpling of nanopatterned, surface-porous flat metallic sheets for the fabrication of volume-porous biomaterials and showed that crumpling can be considered as an efficient alternative to origami-inspired folding. B ...

An important goal of bone tissue engineering is the development of synthetic bio-scaffolds that would eliminate the need for bone transplantation, also known as bone grafting. Bone grafting is associated with some serious limitations such, as morbidity at the donor-site and short ...

4D printing of flat sheets that self-fold into architected 3D structures is a powerful origami-inspired approach for the fabrication of multi-functional devices and metamaterials. However, the opposite stiffness requirements for the folding process and the subsequent loadbeari ...

Shape-shifting materials are a powerful tool for the fabrication of reconfigurable materials. Upon activation, not only a change in their shape but also a large shift in their material properties can be realized. As compared with the 4D printing of 2D-to-3D shape-shifting materia ...

Russian doll deployable meta-implants

Fusion of kirigami, origami, and multi-stability

Deployable meta-implants aim to minimize the invasiveness of orthopaedic surgeries by allowing for changes in their shape and size that are triggered by an external stimulus. Multi-stability enables deployable implants to transform their shape from some compact retracted state ...

Self-folding of complex origami-inspired structures from flat states allows for the incorporation of a multitude of surface-related functionalities into the final 3D device. Several self-folding techniques have therefore been developed during the last few years to fabricate su ...

Mechanical metamaterials are usually designed to exhibit novel properties and functionalities that are rare or even unprecedented. What is common among most previous designs is the quasi-static nature of their mechanical behavior. Here, we introduce a previously unidentified c ...

Shape-shifting of flat materials into the desired 3D configuration is an alternative design route for fabrication of complex 3D shapes, which provides many benefits such as access to the flat material surface and the ability to produce well-described motions. The advanced prod ...

Materials and devices with advanced functionalities often need to combine complex 3D shapes with functionality-inducing surface features. Precisely controlled bio-nanopatterns, printed electronic components, and sensors/actuators are all examples of such surface features. However ...

Contributed

The development of the Delft Cylinder Hand (DCH) demonstrated the design of a lightweight and functional hydraulic body-powered (BP) hand prostheses. The low friction losses of the hydraulics make it an attractive alternative to a classical mechanic transmission using rigid linka ...