Circular Image

F.A. Oliehoek

78 records found

In this volume, we are happy present the post-proceedings of BNAIC/BeNeLearn 2023, the joint conference on Artificial Intelligence and Machine Learning in the BeNeLux, which took place at TU Delft. It is the main regional conference on these topics and has a long tradition: in 20 ...
High sample complexity hampers the successful application of reinforcement learning methods, especially in real-world problems where simulating complex dynamics is computationally demanding. Influence-based abstraction (IBA) was proposed to mitigate this issue by breaking down th ...
Model-based reinforcement learning (MBRL) has drawn considerable interest in recent years, given its promise to improve sample efficiency. Moreover, when using deep-learned models, it is possible to learn compact and generalizable models from data. In this work, we study MuZero, ...
Game theory provides a mathematical way to study the interaction between multiple decision makers. However, classical game-theoretic analysis is limited in scalability due to the large number of strategies, precluding direct application to more complex scenarios. This survey prov ...

Teacher-apprentices RL (TARL)

Leveraging complex policy distribution through generative adversarial hypernetwork in reinforcement learning

Typically, a Reinforcement Learning (RL) algorithm focuses in learning a single deployable policy as the end product. Depending on the initialization methods and seed randomization, learning a single policy could possibly leads to convergence to different local optima across diff ...
Reinforcement learning agents may sometimes develop habits that are effective only when specific policies are followed. After an initial exploration phase in which agents try out different actions, they eventually converge toward a particular policy. When this occurs, the distrib ...
We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fie ...
This work investigates formal generalization error bounds that apply to support vector machines (SVMs) in realizable and agnostic learning problems. We focus on recently observed parallels between probably approximately correct (PAC)-learning bounds, such as compression and compl ...
One of the main challenges of multi-agent learning lies in establishing convergence of the algorithms, as, in general, a collection of individual, self-serving agents is not guaranteed to converge with their joint policy, when learning concurrently. This is in stark contrast to m ...
One of the main challenges of multi-agent learning lies in establishing convergence of the algorithms, as, in general, a collection of individual, self-serving agents is not guaranteed to converge with their joint policy, when learning concurrently. This is in stark contrast to m ...
How can we plan efficiently in a large and complex environment when the time budget is limited? Given the original simulator of the environment, which may be computationally very demanding, we propose to learn online an approximate but much faster simulator that improves over tim ...
Constant growth of cities and their rapid urbanization contribute significantly to an increase in traffic congestion, leading to high costs both in terms of time and fuel consumption. Intelligent Transportation Systems (ITSs) play an important role in managing traffic in urban ar ...
Complex real-world systems pose a significant challenge to decision making: an agent needs to explore a large environment, deal with incomplete or noisy information, generalize the experience and learn from feedback to act optimally. These processes demand vast representation cap ...

BADDr

Bayes-Adaptive Deep Dropout RL for POMDPs

While reinforcement learning (RL) has made great advances in scalability, exploration and partial observability are still active research topics. In contrast, Bayesian RL (BRL) provides a principled answer to both state estimation and the exploration-exploitation trade-off, but s ...
Model-based reinforcement learning methods are promising since they can increase sample efficiency while simultaneously improving generalizability. Learning can also be made more efficient through state abstraction, which delivers more compact models. Model-based reinforcement le ...
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In coopera ...
Learning to cooperate with other agents is challenging when those agents also possess the ability to adapt to our own behavior. Practical and theoretical approaches to learning in cooperative settings typically assume that other agents' behaviors are stationary, or else make very ...
Due to its high sample complexity, simulation is, as of today, critical for the successful application of reinforcement learning. Many real-world problems, however, exhibit overly complex dynamics, which makes their full-scale simulation computationally slow. In this paper, we sh ...

Influence-Augmented Local Simulators

A Scalable Solution for Fast Deep RL in Large Networked Systems

Learning effective policies for real-world problems is still an open challenge for the field of reinforcement learning (RL). The main limitation being the amount of data needed and the pace at which that data can be obtained. In this paper, we study how to build lightweight simul ...