SA

S.M. Ahmadi

Authored

17 records found

Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological de ...

Additively manufactured metallic porous biomaterials based on minimal surfaces

A unique combination of topological, mechanical, and mass transport properties

Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based o ...

Continuous and pulsed selective laser melting of Ti6Al4V lattice structures

Effect of post-processing on microstructural anisotropy and fatigue behaviour

Additive manufacturing technologies in general and laser powder bed fusion (L-PBF) in particular have been on the rise in different applications, including biomedical implants. The effects of the various L-PBF process parameters on the microstructure and properties of Ti6Al4V lat ...
Additively manufactured (AM) porous structures are a new class of biomaterials with many advantages as compared to conventionally produced biomaterials. The goal of this study was to find out how the laser processing parameters including laser power and exposure time affect the m ...

From microstructural design to surface engineering

A tailored approach for improving fatigue life of additively manufactured meta-biomaterials

Recently, lattice titanium manufactured by additive manufacturing (AM) techniques has been utilized in various applications, including biomedical. The effects of topological design and processing parameters on the fatigue behaviour of such meta-biomaterials have been studied befo ...

From microstructural design to surface engineering

A tailored approach for improving fatigue life of additively manufactured meta-biomaterials

Recently, lattice titanium manufactured by additive manufacturing (AM) techniques has been utilized in various applications, including biomedical. The effects of topological design and processing parameters on the fatigue behaviour of such meta-biomaterials have been studied befo ...
One of the main functions of bone is to support the human body mechanically. To fulfil its complex role, bone possesses unique mechanical properties: it is stiff enough to resist deformation while being able to absorb energy. In this thesis, a comprehensive study has been carried ...
Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applica ...
In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials wit ...
In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials wit ...
Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post p ...

Contributed

3 records found

Selective laser melting (SLM) is a novel technique being increasingly used for the production of porous structures with a high degree of precision and near net shape. These porous materials are finding their use in the biomedical industry for implants. In this thesis, the effect ...
The goal of this master thesis is to design an instrument which is able to insert an implant called a spinal cage, designed by M. Ahmadi, between two vertebrae. The spinal cage is of a new hinged, and spring loaded design, requiring a new insertion instrument, since no existing i ...
Selective laser melting (SLM) is an additive manufacturing technique, which is currently on the rise of being used for manufacturing bone implants. Spinal cage, dental and hip implants can for example be manufactured using SLM. Ti6Al4V lattice structures, categorised as metamater ...