GB

Gerd Buntkowsky

Authored

7 records found

Unlike metals where dislocations carry strain singularity but no charge, dislocations in oxide ceramics are characterized by both a strain field and a local charge with a compensating charge envelope. Oxide ceramics with their deliberate engineering and manipulation are pivotal i ...
Reversible field-induced phase transitions define antiferroelectric perovskite oxides and lay the foundation for high-energy storage density materials, required for future green technologies. However, promising new antiferroelectrics are hampered by transition´s irreversibility a ...
Tailoring the electromechanical properties of a material without altering the original composition is an emerging phenomenon for the optimization of functional properties. Post-sintering annealing with varying maximum temperatures, cooling rates, and atmospheres can influence the ...
Lead zirconate (PbZrO3, PZ) is a prototype antiferroelectric (AFE) oxide from which state-of-the-art energy storage materials are derived by chemical substitutions. A thorough understanding of the structure-property relationships of PZ-based materials is essential for both perfor ...
Antiferroelectric materials exhibit a unique electric-field-induced phase transition, which enables their use in energy storage, electrocaloric cooling, and nonvolatile memory applications. However, in many prototype antiferroelectrics this transition is irreversible, which preve ...
The irreversible field-induced phase transition between the antiferroelectric (P) and ferroelectric (Q) polymorphs of sodium niobate (NaNbO 3) ceramics constitutes a focal point in improving the material’s energy storage properties. The coexistence of P and Q phases can be verifi ...
The formation of associated defects (e.g.[Al Ti-V O]˙) upon acceptor doping is commonly seen as a reason for trapping of mobile vacancies in perovskite ionic conductors and electromechanical hardening in piezoelectric perovskites. In order to clarify t ...