FG
F.C. Grozema
206 records found
1
...
Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical ch
...
Spatiotemporal pH imaging using fluorescence lifetime imaging microscopy (FLIM) is an excellent technique for investigating dynamic (electro)chemical processes. However, probes that are responsive at high pH values are not available. Here, we describe the development and applicat
...
A series of three perylenemonoimide-p-oligophenylene-dimethylaniline molecular dyads undergo photoinduced charge separation (CS) with anomalous distance dependence as a function of increasing donor-acceptor (DA) distances. A comprehensive experimental and computational investigat
...
Quasi-2D Hybrid Perovskite Formation Using Benzothieno[3,2-b]Benzothiophene (BTBT) Ammonium Cations
Substantial Cesium Lead(II) Iodide Black Phase Stabilization
3D hybrid perovskites (APbX3) have made a significant impact on the field of optoelectronic materials due to their excellent performance combined with facile solution deposition and up-scalable device fabrication. Nonetheless, these materials suffer from environmental
...
Switching effects are key elements in the design and characterization of nanoscale molecular electronics systems. They are used to achieve functionality through the transition between different conducting states. In this study, we analyze the presence of switching events in refer
...
Limits of Defect Tolerance in Perovskite Nanocrystals
Effect of Local Electrostatic Potential on Trap States
One of the most promising properties of lead halide perovskite nanocrystals (NCs) is their defect tolerance. It is often argued that, due to the electronic structure of the conduction and valence bands, undercoordinated ions can only form localized levels inside or close to the b
...
Excited state dynamics of BODIPY-based acceptor-donor-acceptor systems
A combined experimental and computational study
Donor-bridge-acceptor systems based on boron dipyrromethene (BODIPY) are attractive candidates for bio-imagining and sensing applications because of their sensitivity to temperature, micro-viscosity and solvent polarity. The optimization of the properties of such molecular sensor
...
The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties. To investigate the possibility of preparing n-type polymer semiconductors in which hyd
...
Solution-processed quasi-2D perovskites are promising for stable and efficient solar cells because of their superior environmental stability compared to 3D perovskites and tunable optoelectronic properties. Changing the number of inorganic layers (n) sandwiched between the organi
...
Low-dimensional hybrid perovskites have emerged as promising materials for optoelectronic applications. Although these materials have already demonstrated enhanced stability as compared to their three-dimensional perovskite analogues, their functionality has been limited by the i
...
Herein we demonstrate the dry synthesis of CsBi3I10 both as a free-standing material and in the form of homogeneous thin films, deposited by thermal vacuum deposition. Chemical and optical characterization shows high thermal stability, phase purity, and photoluminescence centered
...
2D layered perovskite containing functionalised benzothieno-benzothiophene molecules
Formation, degradation, optical properties and photoconductivity
2D layered hybrid perovskites are currently in the spotlight for applications such as solar cells, light-emitting diodes, transistors and photodetectors. The structural freedom of 2D layered perovskites allows for the incorporation of organic cations that can potentially possess
...
Perovskite Solar Cells
Stable under Space Conditions
Metal halide perovskite solar cells (PSCs) are of interest for high altitude and space applications due to their lightweight and versatile form factor. However, their resilience toward the particle spectrum encountered in space is still of concern. For space cells, the effect of
...
Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α-FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive δ-FAPbI3 phas
...
In this contribution we demonstrate a solid-state approach to triplet-triplet annihilation upconversion for application in a solar cell device in which absorption of near-infrared light is followed by direct electron injection into an inorganic substrate. We use time-resolved mic
...
Structure-property relationships of donor-π-acceptor (D-π-A) type molecular dyad (pp-AD) and triads (pp-ADA and Me-pp-ADA) based on benzodithiophene and BODIPY with biphenyl spacers have been reported. Rotors pp-AD and pp-ADA showed efficient twisted intramolecular charge transfe
...
Two-dimensional (2D) hybrid perovskites make up an emerging class of materials for optoelectronic applications in which inorganic octahedral layers are separated by nonconductive large organic cations. This leads to a high-dimensional and dielectric confinement and hence a high e
...
Layered hybrid perovskites comprising adamantyl spacer (A) cations based on the A2FAn−1PbnI3n+1(n= 1-3, FA = formamidinium) compositions have recently been shown to act as promising materials for photovoltaic applications. While the cor
...
Directing energy and charge transfer processes in light-harvesting antenna systems is quintessential for optimizing the efficiency of molecular devices for artificial photosynthesis. In this work, we report a novel synthetic method to construct two regioisomeric antenna molecules
...